
1

© Aarenet Inc.

Version: E0.1
Author: AUTHOR

Classification: Public | For Internal Use | Confidential
Status: Released | Preliminary | In Work

REST API BEST
PRACTICES &
EXAMPLES

Application Information anSwitch V7

© Aarenet Inc.

Version: E3.0
Author: D. Bochsler

Classification: Public
Status: Released

2 AARENET TRAINING

INTRODUCTION & MOTIVATION

 This training covers the topics:
 Description of the anSwitch V7 REST API.
 The available REST methods and data formats.
 The configurable anSwitch V7 database objects.
 Best practices for using the anSwitch V7 REST API.
 Examples

3

© Aarenet Inc.

Version: E0.1
Author: AUTHOR

Classification: Public | For Internal Use | Confidential
Status: Released | Preliminary | In Work

IT 'S NOT
MAGIC
IT 'S "KNOW
HOW"

AARENET TRAINING

4 AARENET TRAINING

TABLE OF CONTENTS

1 OVERVIEW REST API

2 SUPPORTED REST METHODS & DATA FORMATS
3 FILTER & SORT & LIMIT OF GET REQUEST RESULTS
4 MANAGEABLE DATABASE OBJECTS

5 ERROR HANDLING & TROUBLE SHOOTING
6 SETTING UP THE REST API INTERACTION

7 BEST PRACTICES
8 "INSOMNIA" A REST CLIENT APPLICATION

9 EXAMPLE: CREATE PBX & PBX EXTENSION
10 EXAMPLE: ASSIGN & PROVISION PHONES

 Terminal type "anDesktop"
 Terminal type "an IP-Phone"
 Terminal type "anConnect"
 Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
 Terminal type "3rd Party SIP-Phone, URL-Provisioning"

11 EXAMPLE: DELETE A PBX OR PBX EXTENSION
12 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

 Example Code: Force a Phone to re-Download its Config
 Example Code: List all Terminals of a PBX Extension
 Example Code: Set the Time Zone of a Phone
 Example Code: Set the Ringing Tones of a Phone
 Example Code: Get the Voice Mail Messages
 Example Code: Get a Call Recording Ordered via CSTA
 Example Code: Upload Music on Hold for a PBX
 Example Code: Manage Call Forward CF

13 EXAMPLE: MANAGE CONTACTS
14 EXAMPLE: LIST CDRS OF A PBX EXTENSION

5 OVERVIEW REST API

1 OVERVIEW REST
API

6

 The REST API allows to configure the anSwitch V7 directly from a
customer relationship management CRM.
 REST stands for: REpresentational State Transfer (For further introductory information, see this Wikipedia article)

 In a multi-tenant setup of an anSwitch V7 every tenant can have its own
CRM application that manages just the own resources.

 A PBX customer may have its own CRM application with just access to the
resources of the own PBX.

OVERVIEW REST API

OVERVIEW ANSWITCH V7 REST API

Telephony Provider

anSwitch V7

anSwitch V7 Administrator, Operator, SupportPortal GUI

REST API

Provider Administration CRM

Administrative personnel
of the provider

Tenant

Tenant CRM
Administrative
personnel of the Tenant

PBX Customer A

PBX Customer n

PBX Campus

PBX Administrator

User

Customer CRM for the own PBX
Administrative
personnel of the
customer

https://en.wikipedia.org/wiki/Representational_state_transfer

7

 The anSwitch V7 configuration REST API cover these general
features:

 HTTP/HTTPS as transport protocol.

 Security by:
 Individual login and authentication for each CRM application.
 Access only to the assigned resources.
 Secure data transfer by HTTPS.

 Various supported data formats are available for the
transfer: JSON, XML and CSV.

OVERVIEW REST API

OVERVIEW ANSWITCH V7 REST API FEATURES

8 OVERVIEW REST API

VIA REST API MANAGEABLE DATABASE OBJECTS

 OrgUnit
 Tenant
 PBX
 PBX Extension

 User
 User account
 User role

 Address (phone number)
 Public numbers
 Private PBX numbers

 Terminal (phones)
 Phone type:

 anDesktop, an IP-Phone, anConnect
 3rd party SIP phone/terminal

 Location of registration
 Presence subscriptions

 Call Distribution
 Forward
 Advanced Call Distribution ACD
 Interactive Voice Response IVR
 Timetable
 Holiday
 Fax server
 Pager / Intercom
 Audio File

 Pricelist & Rating & TopStop
 Pricelist
 Billing & Billing Limit

 Call Detail Record CDR
 Call Quality Record CQR

 Contact
 PBX contacts
 PBX extension user contacts
 Short numbers

9 OVERVIEW REST API

VIA REST API MANAGEABLE DATABASE OBJECTS

UserAttribute

UserRole

User

Pricelist

PricelistDestination

PricelistTariffPlan

PricelistTariffEntry

Holiday

AcdRule

AcdMember

AcdMenu

Acd

TimeTable

TimeTableEntry

AudioFile

OrgUnit

OrgUnitAttribute

CDR

CQR

Contact

Forward

BillingAccount

BillingLimit

Address

Subscription

Terminal

TerminalAttribute

Location

* For the bold framed objects examples
are available in this document.

10 OVERVIEW REST API

WARNING  DIRECT ACCESS TO THE ANSWITCH V7 DATABASE!

Warning  An external CRM application that manages its assigned resources via the REST API has full control
over its accessible instances in the database of the anSwitch V7!

 Careless manipulations via the REST API can destroy beyond repair!
(Only a DB restore could help eventually with all its other negative side effects.)
 Careless manipulations via REST API can destroy the operational functionality of an instance,

e.g. PBX
 There is no check of the configured values of a property of an instance.

There is no built-in "undo".

 Code development for an external application and its testing should therefore definitely take
place either on a test anSwitch V7 or before the anSwitch V7 is put into operation.

GREAT POWER  GREAT RESPONSIBILITY!

11 SUPPORTED REST METHODS & DATA FORMATS

2 SUPPORTED REST
METHODS & DATA
FORMATS

12 SUPPORTED REST METHODS & DATA FORMATS

SUPPORTED REST METHODS

 The following REST methods are supported:

 POST  Create a new instance.

 PUT  Modify an existing instance .

 GET  Retrieve data of an instance or a list of instances.

 DELETE  Delete an instance.

13 SUPPORTED REST METHODS & DATA FORMATS

URL REQUEST DEFINITION

 URL request definition:
https://DOMAIN_REST/rest/<OBJECT_KEY>/<INSTANCE_ID>?<PARAMETERS>

Examples
POST https://DOMAIN_REST/rest/orgUnits
PUT https://DOMAIN_REST/rest/orgUnits/519
GET https://DOMAIN_REST/rest/orgUnits/519
GET https://DOMAIN_REST/rest/orgUnits?where=name.like('Provider A')&properties=id
GET https://DOMAIN_REST/rest/orgUnits/519?properties=name

IP-address with port
Domain name

Mandatory
identifier for
the REST API

Object key
of the
database

Instance ID of the
database

Optional
parameters.

14 SUPPORTED REST METHODS & DATA FORMATS

SUPPORTED DATA FORMATS

 The applicable data formats are:
Json  is the default XML CSV is possible but not recommended

Examples:

 Example of the same GET request for receiving data in the different formats:
Json:
XML:
CSV:

{
"name" : "Mobile – an IP-Phone",
"type" : "anIpPhone",
"orgUnitId" : 523,
"userId" : 113,
"password": "fsdfgsdfgf98ug00hzHJBS",
"username": "fvg56AS056"

}

<terminal>
<name>Mobile – an IP-Phone</name>
<type>anIpPhone</type>
<orgUnitId>523</orgUnitId>
<userId>113</userId>
<password>fsdfgsdfgf98ug00hzHJB</password>
<username>fvg56AS056</username>

</terminal>

"Mobile – an IP-Phone",
"anIpPhone",523,113,fsdfgsdfgf98ug00hzHJB
S,fvg56AS056

PUT https://DOMAIN_REST/rest/terminals/308

PUT https://DOMAIN_REST/rest/terminals/308.xml

PUT https://DOMAIN_REST/rest/terminals/308.csv

JSON formatting rules apply:
White spaces and new lines are allowed.
 String values (type varchar) must be

double quoted "….".
Properties and their values must be

separated by a comma ','.

XML formatting rules apply.  The order of the properties must be
known/evaluated.

 String values with white spaces must be
double quoted "….".

 The values must be separated by a
comma ','.

15 SUPPORTED REST METHODS & DATA FORMATS

DEFINITION OF A POST & PUT REQUEST

 A POST request creates a new instance of an object.
 Example of a POST request, JSON formatted  Response

 A PUT request changes the value of a property of an instance.
 Example of a PUT request, JSON formatted  Response

POST https://DOMAIN_REST/rest/orgUnits
{

"name" : "PBX REST Test",
"type" : "pbx",
"description" : "PBX of company REST",
"parentId" : 25

}

200 OK
{

"name": "PBX REST Test",
"id": 519,
"type": "pbx",
"parentId": 25,
"description": "PBX of company REST"

}

A successful POST is confirmed with a 200 OK.

 The ID of the instance is needed for later referencing.

PUT https://DOMAIN_REST/rest/orgUnits/519
{

"name" : "PBX 1234-abc-0001",
"description" : "PBX of company A"

}

Several the values of several properties of
an instance can be changed.

200 OK
{

"name": "PBX 1234-abc-0001",
"id": 519,
"type": "pbx",
"parentId": 25,
"description": "PBX of company A"

}

A successful PUT is confirmed with a 200 OK.

16 SUPPORTED REST METHODS & DATA FORMATS

DEFINITION OF A GET REQUEST

 A GET Request retrieves data of an instance or a list of instances
 Example of a GET that retrieves all instances.  Response

 Example of a GET that retrieves of a defined  Response
instance.

GET https://DOMAIN_REST/rest/orgUnits
No body

200 OK
{

"orgUnits": [
{

"name": "PBX REST Test",
…

},
{

"name": "PBX Company A",
…

}] }

The whole list of all instances is returned.
 Object name

GET https://DOMAIN_REST/rest/orgUnits/519
No body

200 OK
{

"orgUnits": [
{

"name": "PBX REST Test",
"id": 519,
"type": "pbx",
"parentId": 25,
"description": "PBX of company REST"

}] }

All properties of an instances is returned.
 Object name

17 SUPPORTED REST METHODS & DATA FORMATS

DEFINITION OF A DELETE REQUEST

 A DELETE request deletes the instance.
 Example of a DELETE that retrieves an instances.  Response

DELETE https://DOMAIN_REST/rest/orgUnits/519
No body

200 OK
No body

Warning There is no undo!

Warning Prevent dead data in the database!

Make sure to identify other instances that
reference to this to delete instance!
 Consider what to do with any of this

eventually orphaned instances:
 Delete it too?
 Re-reference it to another

instance?

18 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

3 FILTER & SORT &
LIMIT OF GET
REQUEST RESULTS

19 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

OVERVIEW FILTER & SORT & LIMIT & SPECIFIC PROPERTIES

 Various parameters and parameter combinations can be used in a
GET request to obtain the desired data according to the
requirements..
 Filter

Return only those instances whose property values match the given conditions.

 Sort
Sort the found instances according the value of the defined instance property
ascending or descending.

 Limit
Return only a defined range of instances.

 Specific Properties
Return just the defined property and their values of an instance.

20 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

OVERVIEW FILTER & SORT & LIMIT & SPECIFIC PROPERTIES

 Build–up of GET request parameters:

GET https://DOMAIN_REST/rest/<OBJECT_KEY>?<FILTER>&<SORT>&<LIMIT>&<PROPERTIES>

 The order of the GET parameters is free
GET https://DOMAIN_REST/rest/<OBJECT_KEY>?<FILTER>&<SORT>&<LIMIT>
GET https://DOMAIN_REST/rest/<OBJECT_KEY>?<LIMIT>&<PROPERTIES>
GET https://DOMAIN_REST/rest/<OBJECT_KEY>?<SORT>&<LIMIT>&<FILTER>&<PROPERTIES>

Examples
GET https://DOMAIN_REST/rest/orgUnits?where=name.like('Provider A')&properties=id
GET https://DOMAIN_REST/rest/orgUnits?where=name.like('Front Desk').and(parentId.eq(26))
GET https://DOMAIN_REST/rest/cdrs?where=accOrgUnitId.eq(28)&limit=5&ascending=id&properties=id,

destNumber,timeConnect,timeEnd,chargePublic

?
Begin of GET request
parameters.

&
Logical AND of GET
parameter combinations.

21 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

FILTER INSTANCES

 Filter the instances according
properties.
 The filter parameter:

where=<FILTER_CONDITIONS>
 The filter condition can be a single property or a

combination of properties with conditions.

 Examples:
 Search the tenant with property "name", the string must

match exactly "Provider A":
GET …/orgUnits?where=name.like('Provider A')

 Search the instances where:
* the property "name" begins with "Bo" and has any

number following characters.
* and the property "telNumber" starts with "079" and has

any number following digits.
GET …/addresses?where=name.like('Bo%').and(telNumber.like('079%'))

 List all CDR of a PBX between a start and an end
date/time:

GET …/cdrs?accOrgUnitId.eq(28).and(timeStart.ge(1696111200000))
.and(timeEnd.le(1698793200000))

 SQL like operators are supported.
 Boolean operators

 eq() = equal
 ne() != not equal
 and() && logical AND
 or() || logical OR

 Number operators
 eq() = equal
 ne() != not equal
 lt() < less than
 gt() > greater
 le() ≤ less or equal
 ge() ≥ greater or equal
 like() LIKE
 notLike() NOT LIKE
 in(<list>) IN
 notIn(<list>) NOT IN

 String operators
 eq() = equal
 ne() != not equal
 like() LIKE
 notLike() NOT LIKE
 in(<list>) IN
 notIn(<list>) NOT IN

 SQL like Regex are supported!

22 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

SORT INSTANCES

 Sort the instances according a property value.
 The sort parameter:

ascending=<PROPERTY_NAME>
descending=<PROPERTY_NAME>

 Examples:
 Search the contacts of a PBX Extension where:

* the property "name" begins with "B".
* and sort the list ascending according the property "name".
GET …/ contacts?where=orgUnitId.eq(26).and(name.like('B%'))&ascending=name

 List the CDRs of a PBX where:
* The CDRs are between a start and an end date/time.
* and sort the list descending according the property "timeStart ".
GET …/cdrs? where=accOrgUnitId.eq(28).and(timeStart.ge(1696111200000)).and(timeEnd.le(1698793200000))&descending= timeStart

23 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

LIMIT INSTANCES

 Limit the listed instances according a range of instances.
 The limit parameter:

limit=<RANGE>
limit=<OFFSET>,<RANGE>

 Examples:
 Search the contacts of a PBX Extension where:

* the property "name" begins with "B".
* and sort the list ascending according the property "name".
* and limit the list to the first 5 occurrences.
GET …/ contacts?where=orgUnitId.eq(26).and(name.like('B%'))&ascending=name&limit=5

 List the CDRs of a PBX where:
* the CDRs are older than defined start date/time.
* and limit the list to 200 CDRs with an offset of 100 (CDR instances between 100 and 300 will be returned).
GET …/cdrs?where=accOrgUnitId.eq(28).and(timeStart.ge(1696111200000))&limit=100,200

Get the first 100 CDRs:
GET …/cdrs?where=accOrgUnitId.eq(28).and(timeStart.ge(1696111200000))&limit=100

24 FILTER & SORT & LIMIT OF GET REQUEST RESULTS

SPECIFIC PROPERTIES

 Limit the returned properties of an instance according a list of property names.
 The specific properties parameter:

properties=<PROPERTY_NAME>
 Separate a list of properties with a comma.

 Examples:
 List the names and IDs of all PBX's of a tenant:

* the property "name" begins with "B".
* and sort the list ascending according the property "name".
* and limit the list to the first 5 occurrences.
GET …/orgUnits?where=parentId.eq(4).and(type.like('pbx'))&properties=name,id

 List the contacts of a PBX with their name, dialable destination number and short number:
GET …/contacts?where=orgUnitId.eq(26)&properties=name,telNumberNormalized,shortNumber

 List the name and description of a PBX:
GET …/orgUnits/519?properties=name,description 200 OK

{
"orgUnits": [

{
"name": "PBX REST Test",
"description": "PBX of company REST"

}] }

25 MANAGEABLE DATABASE OBJECTS

4 MANAGEABLE
DATABASE
OBJECTS

26 MANAGEABLE DATABASE OBJECTS

VIA REST API MANAGEABLE DATABASE OBJECTS

UserAttribute

UserRole

User

Pricelist

PricelistDestination

PricelistTariffPlan

PricelistTariffEntry

Holiday

AcdRule

AcdMember

AcdMenu

Acd

TimeTable

TimeTableEntry

AudioFile

OrgUnit

OrgUnitAttribute

CDR

CQR

Contact

Forward

BillingAccount

BillingLimit

Address

Subscription

Terminal

TerminalAttribute

Location

* For the bold framed objects examples
are available in this document.

27 MANAGEABLE DATABASE OBJECTS

OVERVIEW INSTANCE PARAMETERS

 Explanation of the upcoming parameter lists

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/orgUnits
Portal UI > Menu: PBX > Sub-menu: Organization Units

id Primary key [1 - n] Unique OrgUnit-Id, assigned …

name VARCHAR [45] String

type VARCHAR [45] [system | tenant | pbx | extension |
department]

Database data type:
Primary key : Unique id of the object
INT : Number, 0 - 4'294'967'295
BIGINT : Number, 0 - 184'467'440'737'709'551'615
VARCHAR : String [max. length]

Allowed value:
[1 – n] : Number out of a range until

max. of n (max. of the type)
String : Free string e.g., a name
[a | b | c] : List of allowed strings

Request URL with
<OBJECT_KEY>.

Portal UI menu
path for
configuring an
instance.

Property name of the database

28 MANAGEABLE DATABASE OBJECTS

HOW TO GET INFORMATION ABOUT MISSING DB OBJECTS AND
UNKNOWN PROPERTY VALUES?
 The documentation about database objects and their valid

property values may lag when a new anSwitch V7 version is
available.

 Contact the Aarenet support and place a helpdesk ticket about
the missing information.

 Hint for how to get unknown valid property values!
 For getting valid values of e.g., new or extended properties proceed as

following:
1. Via the Portal UI configure the requested parameter in an instance.
2. Read out the instance via the REST API.
3. Check in the returned data the value of the corresponding property.

29 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: ADDRESSES

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/addresses
Portal UI > Menu: PBX > Sub-menu: Public Numbers
Portal UI > Menu: PBX > Sub-menu: PBX Settings > Tile: Public Numbers
Portal UI > Menu: PBX > Sub-menu: Extensions > Extension Setup > Tile: Number

id Primary key [1 - n] Unique Address-Id, assigned automatically by the DB at creation time

name VARCHAR [45] String Displayed name at the called side

number VARCHAR [45] String Public PSTN or private phone number

orgUnitId INT [1 - n] OrgUnit-Id of the PBX Extension this address belongs to

locationAddrId INT [1 - n]

publicAddrId INT [1 - n] The public PSTN phone number which is the DDI number of the private number

flags INT [0 - n]

scopeOuId INT [1 - n] OrgUnit-Id of the PBX this address belongs

userId INT [1 - n] User-Id of the user account this address is associated with

validFrom BIGINT 0 - n Unix time stamp this address is valid from
Must be exact to the milli seconds, e.g. 1634737080000

validUntil BIGINT 0 - n Unix time stamp this address is valid until
Must be exact to the milli seconds, e.g. 1634737080000

30 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: AUDIOFILES

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/audioFiles
Portal UI > Menu: PBX > Sub-menu: PBX Settings > Tile: On Hold Music

Portal UI > Menu: PBX > Sub-menu: Extension Related Features > Tile: VoiceMail Box
Portal UI > Menu: PBX > Sub-menu: Extension Related Features > Tile: Dial by Name

Portal UI > Menu: PBX > Sub-menu: Extension Related Features > Link: Advanced Call Distribution ACD > Tile: Audio Files
Portal UI > Menu: PBX > Sub-menu: Extension Related Features > Link: Interactive Voice Response IVR > Tile: Audio Files

id Primary key [1 - n] Unique AudioFile-Id, assigned automatically by the DB at creation time

name VARCHAR [45] String Name of the audio-file

number VARCHAR [45] String Private phone number a VoiceMail Box message belongs to

duration BIGINT [1 - n] Duration of the audio file in milli seconds

type VARCHAR [12] [greeting | message | static | prompt] "greeting" : Personal VoiceMail Box welcome
"message" : VoiceMail Box message
"static" : Audio file for ACD/IVR, PBX music on hold
"prompt" : Auto attendant – Dial by name

addressId INT [1 - n] Address-Id this audio-file belongs to

time BIGINT [1 - n] Unix timestamp of creation or upload of the audio-file

flags INT [0 – n]

31 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: CDRS

cdrs Var Type [max Length] Value Remark
https:/DOMAIN_REST/rest/cdrs
Portal UI > no page

Note For details about the available CDR fields, see the
training documentation:

"Rating & Call Detail Record CDR"
(doc id: training_as7_706_sys_rating_cdr)

32 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: CONTACTS

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/contacts
Portal UI > Menu: PBX > Sub-menu: Contacts
Portal UI > Menu: PBX Member > Sub-menu: Contacts

id Primary key [1 - n] Unique Contact-Id, assigned automatically by the DB at creation time

type VARCHAR [32] [none | block] "block" : Incoming calls to this contact will be blocked

name VARCHAR [32] String Name of the contact

telNumber VARCHAR [32] String Phone number with local writing customs e.g.: "012 (345) 67 - 89 "

telNumberNormalized VARCHAR [32] String Phone number with striped special and white characters e.g.: 0123456789
 This number will be dialed

shortNumber VARCHAR [32] String Short phone number of this contact

orgUnitId INT [1 - n] OrgUnit-Id this contact belongs to

33 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: FORWARDS

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/forwards
Portal UI > Menu: PBX > Sub-menu: Extensions > Extension Settings > Tile: Number
Portal UI > Menu: PBX > Sub-menu: Extension Related Features > Tile: Call Forwarding

id Primary key [1 - n] Unique Forward-Id, assigned automatically by the DB at creation time

addressId INT [1 - n] Address-Id this forward belongs to

destination VARCHAR [45] Number Phone number or *#-code, e.g. *86300

type VARCHAR [8] [cfu | cfb | cfnr | cff] "cfu" : call forward unconditional
"cfb" : call forward if busy
"cfnr" : call forward if not reachable
"cff" : call forward fallback

flags INT [0 – n]

delay INT [0 – n] Delay in milli seconds, e.g. 1'500 (equals 1.5sec)

timePattern VARCHAR [32] String

34 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: HOLIDAYS

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/holidays
Portal UI > Menu: PBX > Sub-menu: Holidays

id Primary key [1 - n] Unique Terminal-Attribute-Id, assigned automatically by the DB at creation time

orgUnitId INT [1 - n] OrgUnit-Id of the PBX or department

name VARCHAR [45] String Name of the holiday

day INT [1 - 31] Number of day

month INT [1 - 12] Number of month

year INT yyyy Number of year, e.g. 2023

35 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: LOCATIONS

DB Property
Name

DB Data Type Allowed Values Remark

https:/DOMAIN_REST/rest/locations
Portal UI  none

id Primary key [1 - n] Unique Location-Id, assigned automatically by the DB at creation time

terminalId INT [1 - n] Terminal-Id this location belongs to

addressId INT [1 - n] Address-Id this location belongs to

ip VARCHAR [45] String

port INT [1 – n]

contact VARCHAR [256] String

expires BIGINT [0 – n]

endpointId INT [1 – n]

userAgent VARCHAR [256] String

route1 VARCHAR [256] String

route2 VARCHAR [256] String

flags INT [0 – n]

36 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: ORGUNITS & ORGUNITATTRIBUTES

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/orgUnits
Portal UI > Menu: PBX > Sub-menu: Organization Units

id Primary key [1 - n] Unique OrgUnit-Id, assigned automatically by the DB at creation time

name VARCHAR [45] String Unique name

description VARCHAR [256] String Free description

type VARCHAR [45] [system | tenant | pbx | extension |
department]

parentId INT [1 - n] Parent OrgUnit-Id this OrgUnit belongs to

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/orgUnitAttributes
Portal UI > Menu: PBX > Sub-menu: Organization Units > Tile: All Attributes

id Primary key [1 - n] Unique OrgUnit-Attribute-Id, assigned automatically by the DB at creation time

name VARCHAR [128] String Names & values , see separate lists:
 For PBX: see page "List of Important PBX 'OrgUnit Attributes' Names & Values"

value VARCHAR [128] String

orgUnitId INT [1 - n] OrgUnit-Id this attribute belongs to

37 MANAGEABLE DATABASE OBJECTS

LIST OF IMPORTANT PBX 'ORGUNITATTRIBUTES' NAMES & VALUES

Name
of OrgUnit Attribute

Value Remark

Portal UI > Menu: PBX > Sub-menu: PBX Settings > Tile: Properties

maxExternalChannels [0 – n] Default: 0, no limitations

maxServiceExtensions [0 – n] Default: 0, no limitations

maxExtensions [0 – n] Default: 0, no limitations

timezone "timezone[01-xx]" Example: UTC+3  "timezone03"

dateformat dd.MM.yyyy

timeformat HH:mm

ctiDomain String CTI-Domain of a PBX

Portal UI > Menu: Operations > Sub-menu: Organization Units

cloudId String an IP-Phone Cloud ID

ctiDomain String CTI-Domain of a PBX

Portal UI > Menu: PBX > Sub-menu: PBX Settings > Tile: On Hold Music

musicOnHoldId Number See examples "Upload an Audio-File for PBX Extension "Sales IVR"" how to get the ID of an audio-file.

Note The "Valid from" and "Valid until" is defined per
public number, see "Create the Public Phone
Numbers of PBX "PA-PBX-0B""

38 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: TERMINALS

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/terminals
Portal UI > Menu: PBX > Sub-menu: Extension Related Features > Tile: Assigned Phones

id Primary key [1 - n] Unique Terminal-Id, assigned automatically by the DB at creation time

username VARCHAR [45] String SIP username

password VARCHAR [45] String SIP password  will be stored encrypted in the DB

orgUnitId INT [1 - n] PBX Extension OrgUnit-Id this terminal belongs to

userId INT [1 - n] User-Id this terminal belongs to

emergencyLocationId INT [1 - n]

name VARCHAR [45] String Name of this terminal  Choose a unique name. This helps for identification.

type VARCHAR [45] [terminal type/profile] Terminal type of predefined phone types:
"anConnect"
"anIpPhone"
"anIpDeskphone"
"yealinkT21PE2"
"snomD785"
"grandstreamGRP2613"
…

or terminal profile of a phone template:
"profile1"
…

39 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: TERMINALATTRIBUTES

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/terminalAttributes
Portal UI > Menu: PBX > Sub-menu: Phones > Tile: Phone Setup
Portal UI > Menu: PBX > Sub-menu: Phones > Phone Related Features > Tile: Phone Notification
Portal UI > Menu: PBX > Sub-menu: Phones > Phone Related Features > Tile: Phone Keys

id Primary key [1 - n] Unique Terminal-Attribute-Id, assigned automatically by the DB at creation time

name VARCHAR [128] String Names & values , see separate lists on
page "List of Important 'terminalAttributes' Names & Values"

value VARCHAR [128] String

terminalId INT [1 - n] Terminal-Id this attribute belongs to

40 MANAGEABLE DATABASE OBJECTS

LIST OF IMPORTANT 'TERMINALATTRIBUTES' NAMES & VALUES

Name
of Terminal Attribute

Value Remark

Portal UI > Menu: PBX > Sub-menu: Phones > Phone Setup

provisionOpt [autoprov | manual | sip
| clicktocall | anDesktop
| anipphone | dectphone]

"autoprov": Configuration via redirections server and terminal MAC address
"manual": Configuration of the config-download URL in the terminal
"sip": Configuration completely manual of the terminal
"clicktocall": Configuration for CTI base WebPhone or click-to-call button on a Web page

mac 00:00:00:00:00:00 MAC address needed with provisioning optiopn "autoprov"

oneTimeCode String Return value needed with "manual" e.g.: 469b40bc446bde4f
https://DOMAIN/cfg/469b40bc446bde4f701c9413fe35bb11d5acc345803baf0e.xml

webAdminname "admin"

webAdminPassword String Define the password string  will be stored encrypted in the DB

webUsername "user"

webUserPassword String Define the password string  will be stored encrypted in the DB

timezone "timezone[01-xx]" Example: UTC+3  "timezone03"

Portal UI > Menu: PBX > Sub-menu: Phones > Phone Related Features > Tile: Phone Notification

alertExternal [1 - n] Ringtone number 1 – n, the max. number depends on the phone type

alertInternal [1 - n] Ringtone number 1 – n, the max. number depends on the phone type

Portal UI > Menu: PBX > Sub-menu: Phones > Phone Related Features > Tile: Phone Keys

fkey[n] [fkey1 – fkeyn] fkey[n]: n = 1 – the max. key number depends on the phone type

fkey[n] "speed/608/0987654321/Customer C" Speed Dial: [speed/Address-ID of PBX extension/destination/label]

fkey[n] "team/608/711/Front Desk" Team key: [team/Address-ID of PBX extension/destination/label]

fkey[n] "orbit/608/1/Park Call" Park key: [orbit/Address-ID of PBX extension/1/label]

fkey[n] "line/609//711 Front Desk" Line key: [line/Address-ID of PBX extension the number belongs//label]

41 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: USERS

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/OrgUnits/users
Portal UI > Menu: PBX > Sub-menu: Users

id Primary key [1 - n] Unique User-Id, assigned automatically by the DB at creation time

name VARCHAR [45] String

firstName VARCHAR [45] String First name

lastName VARCHAR [45] String Last name

password VARCHAR [45] String Define the password string  will be stored encrypted in the DB

language VARCHAR [45] [en | de | fr | it | vi] Used language in the Portal UI and default system notifications
"en" : English
"de" : German
"fr" : French
"it" : Italian
"vi" : Vietnamese

email VARCHAR [45] string@string.string Valid email address Must be unique in the anSwitch V7 system!

pin VARCHAR [45]

pinFails INT [0 – n]

pinBlocked BIGINT [0 – n]

passwordFails INT [0 – n] Counter of failed logins

passwordBlocked BIGINT [0 | >0] >0: the login is blocked

orgUnitId INT [1 - n] OrgUnit-Id of the PBX Extension this user account belongs to

flags INT [0 - n]

42 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: USERROLES

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/OrgUnits/userRoles
Portal UI > Menu: PBX > Sub-menu: Users > Tile: Roles

id Primary key [1 - n] Unique UserRole-Id, assigned automatically by the DB at creation time

userId INT [1 - n] User Account Id this role belongs to

orgUnitId INT [1 - n] OrgUnit-Id the user account with this role have access rights

role VARCHAR [45] ["admin" | "operator" |"pbx" |
"department" | "extension" | "rest"]

"admin" : Administrator
"operator" : Operator
"pbx" : PBX Administrator
"department" : Department Administrator
"extension" : PBX Member
"rest" : REST API

flags INT [0 - n]

43 MANAGEABLE DATABASE OBJECTS

OBJECT-KEY: USERATTRIBUTES

DB Property Name DB Data Type Allowed Values Remark
https:/DOMAIN_REST/rest/userAttributes
Portal UI > Menu: Operator > Sub-menu: Users > Tile: Attributes

id Primary key [1 - n] Unique Terminal-Attribute-Id, assigned automatically by the DB at creation time

name VARCHAR [45] String Names & values , see separate lists on
page "List of Important 'userAttributes' Names & Values"

value VARCHAR [256] String

userId INT [1 - n] Terminal-Id this attribute belongs to

44 MANAGEABLE DATABASE OBJECTS

LIST OF IMPORTANT 'USERATTRIBUTES' NAMES & VALUES

Name
of Terminal Attribute

Value Remark

Portal UI > Menu: Operator > Sub-menu: Users > Tile: Attributes

ctiDeviceId sip:<INTERNAL_
NUMBER>@<PBX_DOMAIN_NAME>

CTI identification of an agent's PBX Extension which is monitored by a CTI application.
Example: sip:21@pbx.customer.com

45 ERROR HANDLING & TROUBLE SHOOTING

5 ERROR HANDLING
& TROUBLE
SHOOTING

46 ERROR HANDLING & TROUBLE SHOOTING

INTRODUCTION OF ERROR HANDLING

 Host & Path Problems
 Host, server or service not reachable or doesn't reply

 Authentication Problems
 HTTP Status Code: 401  Login is not possible

 OrgUnit & Instance Problems
 HTTP Status Code: 403, 404  Instance doesn't exist or not allowed to write to

 Parameter & Value Problems
 HTTP Status Code: 404  Parameters doesn't exist or not allowed to write to

Note The anSwitch V7 REST server doesn't return an error code or message when:
 A parameter was configured with an invalid value.
 The parameter was not configured at all.

 To solve this problem, see section "Best Practices":
How to Check a Newly Configured Parameter Value?

47 ERROR HANDLING & TROUBLE SHOOTING

HOST & PATH PROBLEMS

 Host & Path Problems:
Error Message/Code or
Error Behavior

Meaning Action Remarks

No response from the host

Possible error messages from
the REST client application:
 connect ETIMEDOUT

IP_ADDRESS_HOST:IP_PORT

 Connection timeout

The requested URL can't be reached.

The service might be temporarily down, or
it may have moved permanently to a new
web address.

Check if the host IP
address is reachable via
the IP network

Check if the Portal
component is running

Check if the URL, IP
address, IP ports and path
are correct

48 ERROR HANDLING & TROUBLE SHOOTING

AUTHENTICATION PROBLEMS

 Authentication Problems
Error Message/Code or
Error Behavior

Meaning Action Remarks

Code: 401 Unauthorized

The username and/or password are
incorrect or doesn't exist.

Check if the user exists
Check if the user's role is

"Rest API"
Check the username and

password

49 ERROR HANDLING & TROUBLE SHOOTING

ORGUNIT & INSTANCE PROBLEMS

 OrgUnit & Instance Problems
Error Message/Code or
Behavior

Meaning Action Remarks

Code: 403 The user is not allowed to write to this
instance.

The user is not allowed to create this
instance.

Check if the user has the
right to access the OrgUnit

Code: 404 Instance does not exist

The OrgUnit or instance system-ID doesn't
exist or was deleted.

Check if the OrgUnit exists
Check if the instance

system-ID exists

50 ERROR HANDLING & TROUBLE SHOOTING

PARAMETER & VALUE PROBLEM

 Parameter & Value Problem
Error Message/Code or
Behavior

Meaning Action Remarks

Code: 400 Bad request

Unsupported format

 ???? PUT with empty body:
{
}

Code: 403 Not allowed to write this instance

The requested parameter (key) doesn't
exist

Check if you have a typo
in the parameter name

Check if the object type
of the instance exists

51 ERROR HANDLING & TROUBLE SHOOTING

TROUBLE SHOOTING

 Check as Administrator the Portal Log.

 For object, instance and property problems check for key
words like:
 RestServlet
 REST API

 For CRM authentication problems check for key words like:
 Authenticator
 PermissionConfig

> Menu: Operator
> Sub-Menu: Logs

> Select Log Type: Portal
> Search for Regex Pattern, e.g.: RestServlet

52 SETTING UP THE REST API INTERACTION

6 SETTING UP THE
REST API
INTERACTION

53

1. Make sure that the IP routing between the provider's and or
customer's CRM and the Public VoIP segment of the anSwitch V7
is end-to-end.
 The REST API is accessible via the virtual IP address or a domain name, e.g.:

https://provider.com/rest
 Configure appropriate firewall policies: anSwitch REST  HTTPS, TCP port: 443

SETTING UP THE REST API INTERACTION

IP CONNECTIVITY TO THE REST API

Public Voice Segment
2.2.2.0/16

Virtual IP: 2.2.2.2
Domain: provider.com

Telephony Provider
CRM application
of the Telephony Provider

HTTPS
REST API

Side B: Data Center, Location B

Portal
PO 2

DataBase
DB 2

High
Availability

HA 2

Side A: Data Center, Location A

Portal
PO 1

DataBase
DB 1

High
Availability

HA 1

Provider
or

anSwitch V7
Firewall

0.5x0.35

0.5x0.350.5x0.35 0.5x0.35

0.5x0.35 0.5x0.35

0.5x0.35Transfer
NetworkTenant/Customer

CRM application
of a tenant or customer

54 SETTING UP THE REST API INTERACTION

CREATE A USER ACCOUNT FOR THE CRM APPLICATION

2. Via the Portal GUI, an administrator or
operator configures a user account for
the CRM application access with
read/write permissions for the desired
OrgUnit.
 For example:
 A tenant must be enabled to manage its PBXs

so the CRM needs access to OrgUnit "Provider
A".

 Create the user for the CRM access.

 The essential parameters needed for the
configuration:

 PBXs
 PBX Administrators

OrgUnit: "Provider A"

 PBX Setup

OrgUnit: "PBX B"

 PBX Setup

OrgUnit: "PBX C"

 PBX Setup

OrgUnit: "PBX A"

REST Client of the tenant
e.g.: PBX Administration CRM

"CRM Provider A"
User Role:
REST API

Name Value Remark / Example
E-mail ……….. Username, e.g.:

crm@provider-a.com
Password ………..
Role Rest API
Access to OrgUnit ………..

> Menu: Operations
> Sub-Menu: Users

55 SETTING UP THE REST API INTERACTION

PREPARE THE CUSTOMERS REST CLIENT

3. Set up the CRM application of the customer:
 Configuring the CRM application for

 IP connectivity
 REST authentication with the assigned user account credentials.

 Write code for managing the anSwitch V7 database via the REST API
 Writing code to handle the REST API is not rocket science, but it must

be done with the care of an accountant.
 See the Warning!

 It is strongly recommended to write and test the code on an anSwitch
V7 test system.
 Use a free REST application for experimenting with REST requests, see section ""Insomnia" a

REST Client Application".
 Consult the examples, see section "Example: Create PBX & PBX Extension" and following.

56 BEST PRACTICES

7 BEST PRACTICES

57 BEST PRACTICES

HOW TO TEST NEW POST, PUT, GET AND DELETE REQUESTS?

 How to test new POST, PUT, GET and DELETE requests?

 For exploring and testing new requests for the configuration of parameters it
is recommended to use in the first place a 3rd party tool before writing
code for the own CRM system.

 For MS Windows the application "Insomnia" by Kong in its free version is fully
sufficient for testing purposes, see section

"Insomnia" a REST Client Application

58 BEST PRACTICES

HOW TO CHECK A NEWLY CONFIGURED PROPERTY VALUE?

 How to check a newly configured
property value?

 In principle, it can be assumed that if a POST or
PUT was confirmed with 200 OK, the data was
saved correctly in the anSwitch V7 database.

 Error messages are described in section "Error
Handling & Trouble Shooting"

 If a CRM application wants to make sure the
process on the right side is recommended.

CRM Application anSwitch V7

Save the original data
of the instance.

Modify the value of the
requested property.

Get the data
out of the
database.

Save the
modified data
in the
database.

Compare the returned instance
data with the original data.
Depending on the resulting
comparison:
 Display success.
 Display an error message.
 Automatically roll back by

PUT the original data.

GET the current data of the instance

200 Ok
Return the data of the instance

PUT the modified data of the instance

200 OK
Return the data of the modified instance

59 BEST PRACTICES

HOW TO GET PROPERTY VALUES?

 The data base objects, its properties and allowed values are
described in section "Manageable DataBase Objects".

60 " INSOMNIA" A REST CLIENT APPLICATION

8 "INSOMNIA" A REST
CLIENT
APPLICATION

61 " INSOMNIA" A REST CLIENT APPLICATION

OVERVIEW "INSOMNIA" A REST CLIENT APPLICATION

 For testing GET, POST, PUT, DELETE commands with the anSwitch
V7 REST API it is a good idea to use a 3rd party product.

 For MS Windows the application "Insomnia" by Kong in its free
version is fully sufficient for testing purposes

https://insomnia.rest

 It is easy to use!

 Download Insomnia installer
https://insomnia.rest/download

https://insomnia.rest/
https://insomnia.rest/download

62 " INSOMNIA" A REST CLIENT APPLICATION

BASIC CONFIGURATIONS

 Set preferences:
> Menu: Application

> Sub-Menu: Preferences
> Select tab: General

> Configure parameter:
 Raw template syntax: Disable it

63 " INSOMNIA" A REST CLIENT APPLICATION

CONFIGURE ENVIRONMENT VARIABLES FOR THE CRM ACCESS

 Navigate to the collection:

 Configure the environment variables:

> Select the "Personal Projects"

> Select the desired "Project", e.g. Insomnia

> Open the desired "Collection", e.g. Demo

> At "Base Environment" click the "Gear" icon

> Configure the essential environment variables

> Click button: Close

1
2
3
4
5

{
"as7Domain": "AS7_DOMAIN_NAME",
"authUsername": "CRM_UN",
"authPassword": "CRM_PW"

}

 Insert the real domain name
 Insert the real username
 Insert the real password

64 " INSOMNIA" A REST CLIENT APPLICATION

CONFIGURE THE FIRST GET REQUEST AS TEMPLATE

 Configure the first request as template
and apply the values of the basic
environment variables.
 Later duplicate this template for further requests and you

have all done for the interaction with the anSwitch V7.

a. Configure the GET request URL

b. Configure the authentication.
 Use the environment variables

> Configure the request:
 Select the request type: GET
 Start with the Url: https://

 Insert the domain name from the environment variable:
Crtl + Space  Select "_.as7Domain"

Continue the path and REST object, e.g.: /rest/orgUnits

> Select tab "Auth" :
 Select: Basic Auth
 Insert the authentication values from the environment

variables:
Crtl + Space  Select "_.authUsername", "_.authPassword"
> Fire your first request  click button: Send

65 " INSOMNIA" A REST CLIENT APPLICATION

CONFIGURE THE FIRST POST REQUEST AS TEMPLATE

 Configure a POST request as template.

a. Make a copy of the GET request
template

b. Configure the POST request URL

c. Configure the body of the POST.

> Configure the request:
 Select the request type: POST
Continue the path and REST object to be created, e.g.:

/rest/orgUnitAttributes

> Select tab "Body" :
 Select: JSON
 Insert the body contents in JSON notation, e.g.:

> At "TEMPLATE GET Request":
 Select: Duplicate

> Rename the request: TEMPLATE POST Request

1
2
3
4
5

{
"name": "dummyAttribute",
"value": "blabla",
"orgUnitId": 1

}

66 EXAMPLE: CREATE PBX & PBX EXTENSION

9 EXAMPLE: CREATE
PBX & PBX
EXTENSION

67 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE OVERVIEW: CREATE PBX & PBX EXTENSION

 Goal:
 Create a basic PBX and its PBX Extensions.

 Data to prepare:
 Values used in the example, see picture on the right side.
 Have ready the OrgUnit ID of the parent Tenant.
 Unique PBX Name
 Description of the PBX

 Hidden TopStop
 Value, note/block, email addresses

 Public numbers and number ranges
 User account for the PBX Administrator

 Email address, first & last name, language

 PBX Extensions & internal Number & DDI
 Private number, display name, DDI, displayed public number

 User account for the PBX Member
 Email address, first & last name, language

 Assumptions:
 Inherited from any parent OrgUnit

CTI basic configuration
 PBX pricelists
 PBX limits, e.g. extension types, channels

 Access to the PSTN via the system default routes and
gateways.

Tenant "Provider A"
PBX "PBX REST Test"

PBX Public Numbers:
Range: 0445555300-9

PBX Extensions:

PSTN

PBX Administrator

PBX Extension: 302
User Account:
 User Two
 user2@test.com
 English

PBX Extension: 303
User Account:
 User Three
 user3@test.com
 English

Hidden TopStop:
Note:
 Level: 80%
 noc@test.com

Block:
 Value: 50
 noc@test.com

PBX Administrator:
 John Muster
 jm@rest.com
 English

0445555301Direct Dialing In

PBX Extension: 301 User One
User Account:
 User One
 user1@test.com
 English

Displayed Nmb 0445555305

68 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE OVERVIEW: CREATE PBX & PBX EXTENSION

 Overview of the execution steps:
1. Create PBX "PBX REST Test".

a. GET: Get OrgUnit ID of Tenant "Provider A"
b. GET: Check if new PBX name "PBX REST Test" is already used
c. POST: Create PBX "PBX REST Test"

2. Create PBX Administrator.
a. GET: Check if a user with email "jm@rest.com" already exists.
b. POST: Create user account of "jm@rest.com"
c. POST: Assign role "PBX Administrator" to user jm@rest.com

3. Assign PBX public numbers, limits, etc.
a. GET: Check if an address with number "0445555300" already exists.
b. POST: Create the public numbers "0445555300-9".
c. GET: Get data of all public numbers of the PBX.
d. POST: Create the PBX limitations, e.g. channel limits.

4. Create PBX extension with internal number, user
account and DDI.
a. POST: Create PBX Extension of "User One".
b. POST: Create user "User One".
c. POST: Assign the user role.
d. POST: Assign the private number 301.
e. POST: Assign DDI & displayed public number for 301.

5. Create hidden TopStop.
a. POST: Create the TopStop billing account for the PBX.
b. POST: Assign the TopStop limit conditions.

 Overview of involved DB objects
1.a

OrgUnit
name: Provider A
type: tenant

OrgUnit
id: 519
name: PBX REST Test
type: pbx

1.c

User
email: jm@rest.com

UserRole
role: pbx

2.b

2.c 3.b

3.d

4.b

4.a

4.d
User
email: user1@rest.com

UserRole
role: extension

OrgUnit
id: 523
name: User One
type: extension

Address
number: 301
name: User One

4.c

Forward
type: cfu
destination: 301 4.e

Address
number: 0445555300

OrgUnitAttribute
name: maxExtensions
value: 10

BillingAccount
hidden:true

BillingLimit
value: 10.0 5.b

5.a

69 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: CREATE PBX

1. Create PBX "PBX REST Test"
a. GET: Get OrgUnit ID of Tenant "Provider A"

b. GET: Check if new PBX name "PBX REST Test" is already used.

c. POST: Create OrgUnit ID of PBX "PBX REST Test"

a. Response

b. Response

c. Response
POST https://DOMAIN_REST/rest/orgUnits
{

"name" : "PBX REST Test",
"type" : "pbx",
"description" : "PBX of company REST",
"parentId" : 25

}

 Mandatory value

200 OK
{

"orgUnits": [
{

"id": 25
}] }

 OrgUnit ID of the tenant, save for later use!

GET https://DOMAIN_REST/rest/orgUnitsorgUnits?where=name.like('Provider
A')&properties=id
No body

200 OK
{

"orgUnits": []
}

The expected result is "empty".
If not, then a PBX with this name exists.

200 OK
{

"name": "PBX REST Test",
"id": 519,
"type": "pbx",
"parentId": 25,
"description": "PBX of company REST"

}

 OrgUnit ID of the PBX, save for later use!

GET https://DOMAIN_REST/rest/orgUnitsorgUnits?where=name.like('PBX REST
Test')&properties=id
No body

70 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: CREATE PBX ADMINISTRATOR

2. Create PBX Administrator
a. GET: Check if a user with email "jm@rest.com" already exists.

b. POST: Create user account of "jm@rest.com"

a. Response

b. Response
POST https://DOMAIN_REST/rest/users
{

"firstName" : "John",
"lastName" : "Muster",
"email" : "jm@rest.com",
"language" : "en",
"orgUnitId" : "519"

}

 Set no password, this the user shall do on
his first login.

200 OK
{

"orgUnits": []
}

The expected result is "empty".
If not, then a user with this email exists.

{
"orgUnits": [

{
"id": 111

}] }

If there is an ID, then check if this user really is the
expected user. If yes, then go directly to 2.c)

 User ID of the PBX administrator to be, save for later
use!

GET
https://DOMAIN_REST/rest/users?where=email.like(jm@rest.com')&properties=id
No body

200 OK
{

"name": null,
"id": 111,
"language": "en",
"password": null,
"pin": null,
"orgUnitId": "519",
"email": "jm@rest.com",
"pinFails": 0,
"pinBlocked": 0,
"passwordFails": 0,
"passwordBlocked": 0,
"firstName": "John",
"lastName": "John",
"sendEmailVoicemail": false

}

 Remember the user ID for assigning the role.

https://domain_rest/rest/orgUnits/2

71 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: CREATE PBX ADMINISTRATOR

2. Create PBX Administrator
c. POST: Assign role "PBX Administrator" to user jm@rest.com. c. Response
POST https://DOMAIN_REST/rest/userRoles
{

"userId" : "111",
"role" : "pbx",
"orgUnitId" : "519"

}

 Mandatory value!

200 OK
{

"userId": "111",
"role": "pbx",
"orgUnitId": "519"

}

72 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: ASSIGN PBX PUBLIC NUMBERS, LIMITS, ETC.

3. Assign PBX public numbers, limits, etc.
a. GET: Check if an address with number "0445555300" already

exists.

b. POST: Create public number of " 0445555300 ".
 3.b) must be done for every single public number!
Make sure always to use the same epoch for "validFrom".

Even when you later add additional public numbers.

c. GET: Get data of all public numbers of the PBX.

a. Response

b. Response

POST https://DOMAIN_REST/rest/addresses
{

"number": "0445555300",
"orgUnitId": 519,
"validFrom": 1699875180000

}
 Insert the epoch of the real date/time.

GET https://DOMAIN_REST/rest/addresses?where=number.like('0445555300')
&properties=id
No body

200 OK
{

"name": null,
"id": 728,
"number": "0445555300",
"orgUnitId": 519,
…
"validFrom": 1699875180000,
"validUntil": 9223372036854775807,
"…

}

 Remember the address ID for:
 Assigning the DDI
 Deleting the number

200 OK
{

"addresses": []
}

The expected result is "empty".
If not, then a number with this number exists.

{
"addresses": [

{
"id": 720

}] }

If there is an ID, then check if this address really is
assigned to this PBX.

GET https://DOMAIN_REST/rest/addresses?where=orgUnitId. eq(519)
No body

73 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: ASSIGN PBX PUBLIC NUMBERS, LIMITS, ETC.

3. Assign PBX public numbers, limits, etc.
 Several PBX parameters are configured as OrgUnit attributes,

e.g. attributes with name:

d. GET: Check the existence of a PBX OrgUnit attribute.

e. POST: Create a PBX OrgUnit attribute.

f. PUT: Change a PBX OrgUnit attribute value.

 Process configuring an OrgUnit attribute:
1. Check if the OrgUnit attribute for the PBX already exists.
2. Depending on the result apply a POST for creating the attribute or

a PUT for changing the attribute value.

d. Response

e. Response

d. Response
200 OK

Check the modified OrgUnit attribute data with a
GET …/orgUnitAttributes/746

POST https://DOMAIN_REST/rest/orgUnitAttributes
{

"name": "maxExtensions",
"value": 5,
"orgUnitId": 519

}

GET
https://DOMAIN_REST/rest/orgUnitAttributes?where=name.like('maxExtensions').a
nd(orgUnitId.eq(519))
No body

PUT https://DOMAIN_REST/rest/orgUnitAttributes/746
{

"value": 10
}

200 OK
{
"orgUnitAttributes": []

}

The OrgUnit attribute doesn't exist yet.
 Do 3.e) for creating the attribute.

{
"name": "maxExtensions",
"value": "5",
"id": 746,
"orgUnitId": 519

}

The OrgUnit attribute exists.
 Do 3.f) for changing the value of the attribute.

maxExtension
maxServiceExtension
maxExternalChannels

 timezone
dateformat
 timeformat

200 OK
{

"name": "maxExtensions",
"value": "5",
"id": 746,
"orgUnitId": 519

}

If there is an ID, then check if this address really is
assigned to this PBX.

74

4. Create PBX extension with internal number, user
account and DDI.
 Every PBX Extension must be created individually!

a. POST: Create PBX Extension of "User One"

b. POST: Create user account "User One"

 Process configuring an OrgUnit attribute:
1. Create the PBX Extension
2. Assign the user account.
3. Assign the private number.

a. Response

b. Response

EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: PBX EXTENSION, INTERNAL NUMBER, DDI

POST https://DOMAIN_REST/rest/orgUnits
{

"name" : "User One",
"type" : "extension",
"parentId" : 519

}

 Mandatory value

200 OK
{

"name": "User One",

"id": 523,
"type": "extension",
"description": null,
"parentId": 519

}

 Remember the extension name for the phone
configuration.

 Remember OrgUnit ID of the PBX Extension for:
 User account and role

POST https://DOMAIN_REST/rest/users
{

"firstName" : "User",
"lastName" : "One",
"email" : "user1@rest.com",
"password": "secret",
"language" : "en",
"orgUnitId" : "523"

}

 Set a password !
This enables us to activate the auto
provisioning of the phone types
anDesktop and anConnect.

200 OK
{

"name": null,
"id": 113,

"language": "en",
"password": "crypt:XEH7Z17q33VmOw==",
"orgUnitId": 523,
"pin": null,
"email": "user1@rest.com",
"pinFails": 0,
"pinBlocked": 0,
"passwordFails": 0,
"passwordBlocked": 0,
"firstName": "User",
"lastName": "One",
"sendEmailVoicemail": false

}

 Remember the user ID for :
 The user role
 Private number
 Terminal

 Note: The password is encrypted!

75 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: PBX EXTENSION, INTERNAL NUMBER, DDI

4. Create PBX extension with internal number, user
account and DDI.

c. POST: Assign role "PBX Administrator" to user user1@rest.com

d. POST: Assign the private number 301

c. Response

d. Response

e. Response

POST https://DOMAIN_REST/rest/addresses
{

"number": "301",
"name": "User One"
"orgUnitId": 523,
"userId": "113",
"scopeOuId": "519"

}

 Name to display.
 OrgUnit ID of the new PBX Extension

 scopeOuId: OrgUnit ID of the PBX or a
Department of this PBX.

200 OK
{

"name": "User One",
"id": 743,
"number": "301",
"orgUnitId": 523,
"userId": 113,
…
"scopeOuId": 519,
…
}

 Remember the address ID for:
 Assigning the location of an associated terminal
 Obtaining the list of VoiceMail messages

POST https://DOMAIN_REST/rest/userRoles
{

"userId" : "113",
"role" : "extension",
"orgUnitId" : "523"

}

 Mandatory value!

200 OK
{

"id": 235,
"orgUnitId": 523,
"userId": 113,
"role": "extension"

}

76 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: PBX EXTENSION, INTERNAL NUMBER, DDI

4. Create PBX extension with internal number, user
account and DDI.

e. POST: Assign DDI to 301.
 DDI is just an ordinary call forwarding unconditional CFU.

PUT: Assign displayed public number 0445555305 to 301.

e. Response

Response
PUT https://DOMAIN_REST/rest/addresses/743
{

"publicAddrId": 733
}

 Address ID of public number 0445555305

200 OK
{

"name": "User One",
"id": 743,
"number": "301",
"orgUnitId": 523,
"userId": 113,
…
"publicAddrId": 733
…
"scopeOuId": 519,
…
}

Check the modified address data with a

POST https://DOMAIN_REST/rest/forwards
{

"addressId": 729,
"destination": 301,
"type": "cfu"

}
 Mandatory value.

200 OK
{

"id": 664,
"type": "cfu",
"destination": "301",
"delay": 0,
"timetableId": 0,
"addressId": 729,
"inactive": false,
"timePattern": null

}

 Remember the address ID for:
 Assigning the DDI
 Deleting the number

77 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: CREATE HIDDEN PBX TOPSTOP

5. Create hidden PBX TopStop.
a. POST: Assign note and block conditions.

a. POST: Create the TopStop billing account for the PBX.

GET: The date of the billing account.

a. Response

Response

GET https://DOMAIN_REST/rest/billingAccounts/48 200 OK
{

"value": 0.0,
"id": 48,
"type": "charge",
"hidden": true,
"units": null,
"resetDaily": false,
"resetMonthly": true,
"resetTime": 1701385200000,
"orgUnitId": 519

}

POST https://DOMAIN_REST/rest/billingAccounts
{

"orgUnitId": 519,
"type": "charge",
"resetTime": 1701385200000,
"resetMonthly": true,
"hidden": true,
"flags": 18

}

 PBX OrgUnit ID
 Mandatory value.
 Insert the current epoch date/time

 Mandatory value.

200 OK
{

"value": 0.0,
"id": 48,
"type": "charge",
"hidden": true,
"units": null,
"resetDaily": false,
"resetMonthly": true,
"resetTime": 1701385200000,
"orgUnitId": 519

}

 Remember the billing account ID for:
 Assigning note and block level

78 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: CREATE HIDDEN PBX TOPSTOP

5. Create hidden PBX TopStop.

a. POST: Create the TopStop billing account for the PBX.

b. POST: Assign the TopStop limit conditions.

a. Response

b. Response

POST https://DOMAIN_REST/rest/billingAccounts
{

"orgUnitId": 519,
"type": "charge",
"resetTime": 1701385200000,
"resetMonthly": true,
"hidden": true,
"flags": 18

}

 PBX OrgUnit ID
 Mandatory value.
 Insert the current epoch date/time

 Mandatory value.

200 OK
{

"value": 0.0,
"id": 48,
"type": "charge",
"hidden": true,
"units": null,
"resetDaily": false,
"resetMonthly": true,
"resetTime": 1701385200000,
"orgUnitId": 519

}

 Remember the billing account ID for:
 Assigning note and block limits

 Take the currency type from the assigned pricelist.

POST https://DOMAIN_REST/rest/billingLimits
{

"value": 10.0,
"enabled": true,
"blocking": false,
"billingAccountId": 48,
"notifyMail": "noc@rest.com"

}

 For a blocking limit set the value to true.

200 OK
{

"value": 10.0,
"id": 40,
"enabled": true,
"blocking": false,
"disabled": false,
"billingAccountId": 48,
"notifyMail": "noc@rest.com",
"notifyTime": 0

}

 Remember the billing limit ID for:
 Adjusting the value
 Adjusting the email address
 Blocking/de-blocking the limit

79 EXAMPLE: ASSIGN & PROVISION PHONES

10 EXAMPLE: ASSIGN
& PROVISION
PHONES

80

Tenant "Provider A"
PBX "PBX REST Test"

PBX Public Numbers:
Range: 0445555300-9

PBX Extensions:

0445555301DDI
PBX Extension:
301
Name: User One

User
email: user1@rest.com

EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE OVERVIEW: ASSIGN & PROVISION PHONES

 Goal:
 Assign different phone types to a PBX Extension.

 Data to prepare:
 Values used in the example, see picture on the right side.
 Have ready the type of phone.
 Phone Name
 For 3rd party SIP-Phone provisioning have ready:

 For the device configuration interface, e.g. Web
administration.
 Username for admin and eventually user
 Password

 For auto-provisioning the MAC address of the phone
device.

 …

 Assumptions:
 On the anSwitch V7 system level the phone

manufacturer redirection service is configured.
 On the system, tenant or PBX level the basic CTI URL is

configured.
 On the tenant or PBX level an optional other name for

the anDesktop is configured.
 The PBX Extension has assigned a user account.

PSTN

Name: "Mobile – an IP Phone"
Type: an IP-Phone
Auto-Provisioning

Name: "Home Office – Type abc"
Type: 3rd Party SIP-Phone

Auto-Provisioning
MAC: 11:22:33:44:55:66

Name: "Vacation Office – Type xyz"
Type: 3rd Party SIP-Phone

URL-Provisioning

Name: "Office - anDesktop"
Type: anDesktop
Auto-Provisioning

Name: "Meet - anConnect"
Type: anConnect
Auto-Provisioning

81 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE OVERVIEW: ASSIGN & PROVISION PHONES

 Overview of the execution steps:
1. Assign a phone type to an address.

 For each phone type that is assigned to a PBX Extension
an own terminal must be created.

 For each terminal, an own location must be created.
 For each terminal type different types of terminal

attributes must be created.
 Examples for:

 Terminal type: anDesktop
 Terminal type: an IP-Phone
 Terminal type: anConnect
 Terminal type: 3rd Party SIP-Phone, Auto-Provisioning
 Terminal type: 3rd Party SIP-Phone, URL-Provisioning

a. POST: Create the terminal and its needed terminal attributes.
b. POST: Create the terminal location.
c. POST: Create message subscriptions.

2. Provision the phone.
a. PUT: Make ready the provisioning the phone.
b. PUT: Send an email to the user with installation instructions.

 Overview of involved DB objects
OrgUnit
name: PBX REST Test
type: pbx

1.b1.a

User
id: 113
email: user1@rest.com

OrgUnit
id: 523
name: User One
type: extension

Address
id: 743
number: 301
name: User One

Terminal
id: 455
name: Home Office
type: yealinkT40G

Location
terminalId: 455
addressId : 743

TerminalAttribute
name: mac
value: 11:22:33:44:55:66

TerminalAttribute
name: provisionOpt
value: autoprov

1.c

1.d
Subscription
event-type: message-summary

82 EXAMPLE: ASSIGN & PROVISION PHONES

TERMINAL TYPE
"ANDESKTOP"

83 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "ANDESKTOP"

1. Assign a phone type "anDesktop" to an address.

a. POST: Create the terminal.

GET: Check the terminal data.

a. Response
POST https://DOMAIN_REST/rest/terminals
{

"name" : "Office - anDesktop",
"type" : "cti",
"orgUnitId" : 523,
"userId" : 113,
"password": "fsdfgsdfgf98ug00hzHJBS",
"username": "453lkjnMN43"

}

 Mandatory value
 OrgUnit ID of the PBX Extension.

 Always create a new random password
 Always create a new random username

200 OK
{

"name": "Office - anDesktop",
"id": 297,
"type": "cti",
"password":
"crypt:OxsnNa_fTXqmO2OjjyNXKKF0qR",
"username": "453lkjnMN43",
"barred": false,
"orgUnitId": 523,
"userId": 113,
"emergencyLocationId": 0,
"sendAoc": false,
"sendsMusicOnHold": false,
"specialArrangement": false,
"gateway": false,
"noGui": false,
"markedDelete": false

}

 Remember the terminal ID for:
 Terminal attributes
 Location
 Subscription

GET https://DOMAIN_REST/rest/terminals/297
variant:
GET https://DOMAIN_REST/rest/terminals?=&where=name.like('Office -
anDesktop')

https://domain_rest/rest/terminals/455
https://domain_rest/rest/terminals/455

84 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "ANDESKTOP"

1. Assign a phone type "anDesktop" to an address.

a. POST: Create the needed terminal attributes
 Mandatory terminal attributes for this terminal type:

GET: Check all terminal attributes of this terminal

b. POST: Create the terminal location.

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 297,
"name": "provisionOpt",
"value": "anDesktop"

}
 Mandatory value

{
"terminalId": 297,
"name": "oneTimeKey",
"value": CtrbNZRvX4Q9QUzuLffy339db124

}
 Any random string

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(297)

200 OK
{

…
"id": 289,
"terminalId": 297,
"addressId": 743,
…

}

POST https://DOMAIN_REST/rest/locations
{

"terminalId": 297,
"addressId": 743

}

https://domain_rest/rest/terminals/455

85 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "ANDESKTOP"

2. Provision the phone.

a. PUT: Make ready the provisioning the phone.

b. PUT: Send an email to the user with installation instructions.

c. Response
PUT https://DOMAIN_REST/rest/terminals/297.provision
{}  The body must be empty!

200 OK
{

"provisioningOption": "anDesktop",
"status": 200,
"ctiDeviceID": "term.297",
"windowsDownloadURL": "https://IP-ADDR/cti/app/update/belasAnDesktop-latest.exe",
"macOSDownloadURL": "https://IP-ADDR/cti/app/update/belasAnDesktop-latest.pkg",
"setupURL": "https://IP-ADDR/cti/app/redirect/ancall?data=ancall%3Asetup%...."

}

PUT https://DOMAIN_REST/rest/terminals/297.mail
{}  The body must be empty!

200 OK
No body

86 EXAMPLE: ASSIGN & PROVISION PHONES

TERMINAL TYPE
"AN IP-PHONE"

87 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "AN IP-PHONE"

1. Assign a phone type "an IP-Phone" to an address.

a. POST: Create the terminal.

GET: Check the terminal data.

a. Response
POST https://DOMAIN_REST/rest/terminals
{

"name" : "Mobile – an IP-Phone",
"type" : "anIpPhone",
"orgUnitId" : 523,
"userId" : 113,
"password": "fsdfgsdfgf98ug00hzHJBS",
"username": "fvg56AS056"

}

 Mandatory value
 OrgUnit ID of the PBX Extension.

 Always create a new random password
 Always create a new random username

200 OK
{

"name": "Mobile – an IP-Phone",
"id": 308,
"type": "anIpPhone",
"password": "crypt:OxsnNa_fTXqmO2OjjyN",
"username": "fvg56AS056",
"barred": false,
"orgUnitId": 523,
"userId": 113,
"emergencyLocationId": 0,
"sendAoc": false,
"sendsMusicOnHold": false,
"specialArrangement": false,
"gateway": false,
"noGui": false,
"markedDelete": false

}

 Remember the terminal ID for:
 Terminal attributes
 Location
 Subscription

GET https://DOMAIN_REST/rest/terminals/299
variant:
GET https://DOMAIN_REST/rest/terminals?=&where=name.like('Mobile – an IP-
Phone')

88 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "AN IP-PHONE"

1. Assign a phone type "an IP-Phone" to an address.

a. POST: Create the needed terminal attributes
 Mandatory terminal attributes for this terminal type:

GET: Check data of all terminal attributes of this terminal

b. POST: Create the terminal location. b. Response

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 308,
"name": "provisionOpt",
"value": "anipphone"

}
 Mandatory value

{
"terminalId": 308,
"name": "oneTimeCode",
"value": "2970b736a5911789"

}
 Any random string

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(299)

200 OK
{

…
"id": 300,
"terminalId": 308,
"addressId": 743,
…

}

POST https://DOMAIN_REST/rest/locations
{

"terminalId": 308,
"addressId": 743

}

89 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "AN IP-PHONE"

1. Assign a phone type "an IP-Phone" to an address.

c. POST: Create message subscriptions "message-summary".

POST: Create message subscriptions "as-feature-event".

GET: Check data of all subscriptions of this terminal

c. Response
200 OK

{
"id": 928,
"eventType": "message-summary",
"terminalId": 455,
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301",
…

}

POST https://DOMAIN_REST/rest/subscriptions
{

"terminalId": 308,
"eventType": "message-summary",
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301"

}

 Mandatory value
 Terminal ID
 Privat phone number
 Terminal ID
 Privat phone number

GET https://DOMAIN_REST/rest/subscriptions?=&where=terminalId.eq(308)

200 OK
{

"id": 926,
"eventType": "message-summary",
"terminalId": 455,
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301",
…

}

POST https://DOMAIN_REST/rest/subscriptions
{

"terminalId": 308,
"eventType": "as-feature-event",
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301"

}

 Mandatory value
 Terminal ID
 Privat phone number
 Terminal ID
 Privat phone number

90 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "AN IP-PHONE"

2. Provision the phone.

a. PUT: Make ready the provisioning the phone.

b. PUT: Send an email to the user with installation instructions.

c. Response
PUT https://DOMAIN_REST/rest/terminals/308.provision
{}  The body must be empty!

200 OK
{

"provisioningOption": "an IP-Phone",
"status": 200,
"link": "csc:otc:2970b736a5911789@CLID_AS7POC2*",
"accountID": "otc@CLID_ASV7",
"password": "2970-b736-a591-1789"

}

PUT https://DOMAIN_REST/rest/terminals/308.mail
{}  The body must be empty!

200 OK
No body

91 EXAMPLE: ASSIGN & PROVISION PHONES

TERMINAL TYPE
"ANCONNECT"

92 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "ANCONNECT"

1. Assign a phone type "anConnect" to an address.

a. POST: Create the terminal.

GET: Check the terminal data.

a. Response
POST https://DOMAIN_REST/rest/terminals
{

"name" : "Meet – anConnect",
"type" : "anConnect",
"orgUnitId" : 523,
"userId" : 113,
"password": "rtzeZIIUZ7843sdfKL",
"username": "gK4dg89345mwlP"

}

 Mandatory value
 OrgUnit ID of the PBX Extension.

 Always create a new random password
 Always create a new random username

200 OK
{

"name": "Meet – anConnect",
"id": 310,
"type": "anConnect",
"password": "crypt:OxsnNa_fTXqmO2OjjyN",
"username": "gK4dg89345mwlP",
"barred": false,
"orgUnitId": 523,
"userId": 113,
"emergencyLocationId": 0,
"sendAoc": false,
"sendsMusicOnHold": false,
"specialArrangement": false,
"gateway": false,
"noGui": false,
"markedDelete": false

}

 Remember the terminal ID for:
 Terminal attributes
 Location
 Subscription

GET https://DOMAIN_REST/rest/terminals/310
variant:
GET https://DOMAIN_REST/rest/terminals?=&where=name.like(Meet –
anConnect')

https://domain_rest/rest/terminals/455
https://domain_rest/rest/terminals/455

93 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "ANCONNECT"

1. Assign a phone type "anConnect" to an address.

a. POST: Create the needed terminal attributes
 None

b. POST: Create the terminal location. b. Response
200 OK

{
…
"id": 302,
"terminalId": 309,
"addressId": 743,
…

}

POST https://DOMAIN_REST/rest/locations
{

"terminalId": 310,
"addressId": 743

}

94 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "ANCONNECT"

1. Assign a phone type "anConnect" to an address.

c. POST: Create message subscription "dialog".

GET: Check data of all subscriptions of this terminal

c. Response
200 OK

{
"id": 931,
"eventType": "dialog",
"terminalId": 455,
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301",
…

}

POST https://DOMAIN_REST/rest/subscriptions
{

"terminalId": 310,
"eventType": "dialog",
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301"

}

 Mandatory value
 Terminal ID
 Privat phone number
 Terminal ID
 Privat phone number

GET https://DOMAIN_REST/rest/subscriptions?=&where=terminalId.eq(310) 200 OK
{

…
}

95 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "ANCONNECT"

1. Assign a phone type "anConnect" to an address.

c. PUT: Make ready the provisioning the phone.

d. PUT: Send an email to the user with installation instructions.

c. Response

PUT https://DOMAIN_REST/rest/terminals/310.provision
{} Not available yet!

 The body must be empty!

200 OK
{

…
}

PUT https://DOMAIN_REST/rest/terminals/310.mail
{}  The body must be empty!

200 OK
No body

PUT https://DOMAIN_REST/rest/terminals/310
{

"type": "anConnect"
}

 Mandatory value

96 EXAMPLE: ASSIGN & PROVISION PHONES

TERMINAL TYPE
"3RD PARTY SIP-
PHONE, AUTO-
PROVISIONING"

97 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

 Provisioning a "3rd Party SIP-Phone" via the REST API can be a
tedious work, as every manufacturer has different parameters
that need to be configured.
 The type of parameters may also differ from phone type to phone type of the same manufacturer.
 The different parameters are represented in the "Terminal Attributes".

 The following instructions are just a guideline.

Best
Practice

1. Provision only 3rd party SIP-phone types that can be provisioned via the Portal UI
 You can evaluate all needed terminal attributes and their values.

2. Assign via the Portal UI the desired phone type and read out all generated Terminal Attributes.
a) Give this phone a unique name that you can search via the REST API, e.g.: "test phone xyz".
b) Get the terminal ID and type of the phone "test phone xyz"

c) Get all terminal attributes that were generated for the phone "test phone ab"

d) Use the parameter "type" and all listed terminal attributes for your provisioning.

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(320)

GET https://DOMAIN_REST/rest/terminals?=&where=name.like('test phone xyz')&properties=id,type

98 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

 For this REST API example a Yealink T40 G is chosen.

 Assign a phone Yealink T40 G with name "test phone
Yealink T40G" to a PBX Extension the REST API has
access rights to.

a. GET: Get the terminal type and ID of this test phone.

b. GET: Get the terminal attributes of this test phones

a. Response

b. Response

200 OK
{

"terminals": [
{

"id": 320,
"type": "yealinkT40G"

}] }
 Remember this type for:
 The phone type creation via REST API.

GET https://DOMAIN_REST/rest/terminals?=&where=name.like(test phone Yealink
T40G')&properties=id,type

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(320) 200 OK
{

"terminalAttributes": …
The whole list of terminal attributes are returned
for this Yealink T40G with auto-provisioning.

Example: Yealink T40G Terminal Attribute Name Value Remark
Mandatory terminal attributes for
Auto-Provisioning

provisionOpt
macAuth
mac

"autoprov"
"true"
"11:22:33:44:55:66"

Provisioning type
Mandatory due to the provisioning type
MAC address of the device

Terminal attributes needed for the
correct working of this phone type.

Note:
The names and values can change
according the selected phone type.

webAdminname
webAdminPassword
webUsername

"admin"
"crypt:ejlHpabqU7"
"user"

Admin username
Encrypted admin password
User username

fkey1
attrDisplayFirstPageOnly
attrPhoneFirstPageOnly

"line/743//301 User One"
"false"
"false"

Attributes with instructions for configuring
the first configurable function key of the
phone.

99 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

1. Assign a phone type "3rd Party SIP-Phone, Auto-
Provisioning" to an address.

a. POST: Create the terminal Yealink T40G.

b. GET: Check terminal data

a. Response
POST https://DOMAIN_REST/rest/terminals
{

"name" : "Home Office – Yealink T40G",
"type" : "yealinkT40G",
"orgUnitId" : 523,
"userId" : 113,
"password": "fsdfgsdfgf45rvbug00hzHJBS",
"username": "abh56AS056"

}

 Mandatory value
 OrgUnit ID of the PBX Extension.

 Always create a new random password
 Always create a new random username

200 OK
{

"name": "Home Office – Yealink T40G",
"id": 321,
"type": "yealinkT40G",
"password": "crypt:ejlHpabqU7PPcvfqAob_Jt",
"username": "abh56AS056",
"barred": false,
"orgUnitId": 523,
"userId": 113,
"emergencyLocationId": 0,
"sendAoc": false,
"sendsMusicOnHold": false,
"specialArrangement": false,
"gateway": false,
"noGui": false,
"markedDelete": false

}

 Remember the terminal ID for:
 Terminal attributes
 Location
 Subscription

GET https://DOMAIN_REST/rest/terminals/321
variant:
GET https://DOMAIN_REST/rest/terminals?=&where=name.like(Home Office –
Yealink T40G')

100 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

1. Assign a phone type "3rd Party SIP-Phone, Auto-
Provisioning" to an address.

b. POST: Create the mandatory terminal attributes for auto-
provisioning.

GET: Check data of all terminal attributes of this terminal.

b. POST: Create the terminal attributes for the correct working of this
phone type

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 321,
"name": "provisionOpt",
"value": "autoprov"

}
 Mandatory value!

{
"terminalId": 321,
"name": "macAuth",
"value": "true"

}
 Mandatory value!

{
"terminalId": 321,
"name": "mac",
"value": "66:55:44:33:22:11"

}
 Insert the MAC address of the device

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(321)

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 325,
"name": "webAdminname",
"value": "admin"

}
 Mandatory value!

{
"terminalId": 325,
"name": "webAdminPassword",
"value": "mySecretPw"

}
 Insert a secure password!

{
"terminalId": 325,
"name": "webUsername",
"value": "user"

}
 Mandatory value!

{
"terminalId": 325,
"name": "fkey1",
"value": "line/743//301 User One"

}
 The value composes:

"line/<ADDRESS_ID>//<PRIVATE_NUMBER>
<EXTENSION NAME>"

{
"terminalId": 325,
"name": "attrDisplayFirstPageOnly",
"value": "false"

}

{
"terminalId": 325,
"name": "attrPhoneFirstPageOnly",
"value": "false"

}

101 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

1. Assign a phone type "3rd Party SIP-Phone, Auto-
Provisioning" to an address.

c. POST: Create the terminal location. c. Response
200 OK

{
…
"id": 314,
"terminalId": 321,
"addressId": 743,
…

}

POST https://DOMAIN_REST/rest/locations
{

"terminalId": 321,
"addressId": 743

}

102 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

1. Assign a phone type "3rd Party SIP-Phone, Auto-
Provisioning" to an address.

d. POST: Create message subscriptions "message-summary".

POST: Create message subscriptions "as-feature-event".

GET: Check data of all subscriptions of this terminal

d. Response
200 OK

{
"id": 944,
"eventType": "message-summary",
"terminalId": 321,
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301",
…

}

POST https://DOMAIN_REST/rest/subscriptions
{

"terminalId": 321,
"eventType": "message-summary",
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301"

}

 Mandatory value
 Terminal ID
 Privat phone number
 Terminal ID
 Privat phone number

GET https://DOMAIN_REST/rest/subscriptions?=&where=terminalId.eq(321)

200 OK
{

"id": 945,
"eventType": "message-summary",
"terminalId": 321,
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301",
…

}

POST https://DOMAIN_REST/rest/subscriptions
{

"terminalId": 321,
"eventType": "as-feature-event",
"notifierId": "743",
"notifierNumber": "301",
"subscriberAddrId": 743,
"subscriberNumber": "301"

}

 Mandatory value
 Terminal ID
 Privat phone number
 Terminal ID
 Privat phone number

103 EXAMPLE: ASSIGN & PROVISION PHONES

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
AUTO-PROVISIONING"

2. Provision the phone.

a. PUT: Make ready the provisioning the phone.

b. PUT: Send an email to the user with installation instructions.

c. Response
PUT https://DOMAIN_REST/rest/terminals/321.provision
{}  The body must be empty!

200 OK
{

"provisioningOption": "an IP-Phone",
"status": 200,
"link": "csc:otc:2970b736a5911789@CLID_AS7POC2*",
"accountID": "otc@CLID_ASV7",
"password": "2970-b736-a591-1789"

}

PUT https://DOMAIN_REST/rest/terminals/321.mail
{}  The body must be empty!

200 OK
No body

104 EXAMPLE: ASSIGN & PROVISION PHONES

TERMINAL TYPE
"3RD PARTY SIP-
PHONE, URL-
PROVISIONING"

105 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
URL-PROVISIONING"

 Provisioning a "3rd Party SIP-Phone" via the REST API can be a
tedious work, as every manufacturer has different parameters
that need to be configured.
 The type of parameters may also differ from phone type to phone type of the same manufacturer.
 The different parameters are represented in the "Terminal Attributes".

 The following instructions are just a guideline.

Best
Practice

1. Provision only 3rd party SIP-phone types that can be provisioned via the Portal UI
 You can evaluate all needed terminal attributes and their values.

2. Assign via the Portal UI the desired phone type and read out all generated Terminal Attributes.
a) Give this phone a unique name that you can search via the REST API, e.g.: "test phone xyz".
b) Get the terminal ID and type of the phone "test phone abc"

c) Get all terminal attributes that were generated for the phone "test phone ab"

d) Use the parameter "type" and all listed terminal attributes for your provisioning.

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(321)

GET https://DOMAIN_REST/rest/terminals?=&where=name.like('test phone abc')&properties=id,type

106 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
URL-PROVISIONING"

 Provisioning a "3rd Party SIP-Phone" via "URL-Provision" is almost
identical to the "Auto-Provisioning".

 The only difference lies in the provisioning type terminal
attributes.

 This example shows just the differences in the terminal
attributes.

107 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
URL-PROVISIONING"

 For this REST API example a Yealink T40 G is chosen.

 Assign a phone Yealink T40 G with name "test phone
Yealink T40G" to a PBX Extension the REST API has
access rights to.

a. GET: Get the terminal type and ID of this test phone.

b. GET: Get the terminal attributes of this test phones

a. Response

b. Response

200 OK
{

"terminals": [
{

"id": 322,
"type": "yealinkT40G"

}] }
 Remember this type for:
 The phone type creation via REST API.

GET https://DOMAIN_REST/rest/terminals?=&where=name.like(test phone Yealink
T40G')&properties=id,type

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(322) 200 OK
{

"terminalAttributes": …
The whole list of terminal attributes are returned
for this Yealink T40G with URL-provisioning.

Example: Yealink T40G Terminal Attribute Name Value Remark
Mandatory terminal attributes for
URL-Provisioning

provisionOpt
oneTimeCode

"manual"
"e62a44f54b95cc14"

Provisioning type
Last created one time code

Terminal attributes needed for the
correct working of this phone type.

Note:
The names and values can change
according the selected phone type.

webAdminname
webAdminPassword
webUsername

"admin"
"crypt:ejlHpabqU7"
"user"

Admin username
Encrypted admin password
User username

fkey1
attrDisplayFirstPageOnly
attrPhoneFirstPageOnly

"line/743//301 User One"
"false"
"false"

Attributes with instructions for configuring
the first configurable function key of the
phone.

108 EXAMPLE: CREATE PBX & PBX EXTENSION

EXAMPLE CODE: TERMINAL TYPE "3RD PARTY SIP-PHONE,
URL-PROVISIONING"

1. Assign a phone type "3rd Party SIP-Phone, URL" to an
address.

a. POST: Create the terminal Yealink T40G.
 Equal as with auto-provisioning

b. POST: Create the mandatory terminal attributes for URL-
provisioning.

GET: Check data of all terminal attributes of this terminal.

1 c. – d. & 2. a. - .b. These steps are equal to auto-
provisioning.

b. POST: Create the terminal attributes for the correct working of this
phone type

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 325,
"name": "provisionOpt",
"value": "manual"

}
 Mandatory value!

{
"terminalId": 325,
"name": "oneTimeCode",
"value": "e62a44f54b95cc14"

}
 Requirement of the value:
 Minimum length: 16 char
 Random string composed of:
 Small letters: [a-z]
 Digits: [0-9]

GET https://DOMAIN_REST/rest/terminalAttributes?=&where=terminalId.eq(325)

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 325,
"name": "webAdminname",
"value": "admin"

}
 Mandatory value!

{
"terminalId": 325,
"name": "webAdminPassword",
"value": "mySecretPw"

}
 Insert a secure password!

{
"terminalId": 325,
"name": "webUsername",
"value": "user"

}
 Mandatory value!

{
"terminalId": 325,
"name": "fkey1",
"value": "line/743//301 User One"

}
 The value composes:

"line/<ADDRESS_ID>//<PRIVATE_NUMBER>
<EXTENSION NAME>"

{
"terminalId": 325,
"name": "attrDisplayFirstPageOnly",
"value": "false"

}

{
"terminalId": 325,
"name": "attrPhoneFirstPageOnly",
"value": "false"

}

109 EXAMPLE: DELETE A PBX OR PBX EXTENSION

11 EXAMPLE: DELETE
A PBX OR PBX
EXTENSION

110 EXAMPLE: DELETE A PBX OR PBX EXTENSION

EXAMPLE CODE: DELETE A PBX OR PBX EXTENSION

Delete a PBX or PBX Extension.

 No REST request exists that deletes a PBX or PBX Extension with all its associated
instances of the available objects.
 Deleting just the OrgUnit of a PBX leaves a lot of garbage in the database DB.
 Unwanted side effects of garbage in the DB database cannot be ruled out.
 Finding all associated instances and deleting them one by one needs a lot of

code in a customer's CRM application.

Best
Practice

Delete a PBX or PBX Extension via the Portal UI.

111 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

12 EXAMPLE: USEFUL
PBX & TERMINAL
COMMANDS

112 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: FORCE A PHONE TO RE-DOWNLOAD ITS CONFIG

 Force a phone to re-download its
configuration
 A re-download may become necessary for a set of terminals,

e.g. its phone template changed.
 Proposed process:

1. Send a GET request with the desired query to obtain the
list of terminals matching.

2. Send the notify request for each of them one by one.

a. PUT: Send a notification to the phone to re-load its
configuration.

a. Response
PUT https://DOMAIN_REST/rest/terminals/310.notify
{}  The body must be empty!

200 OK
No body Check if the device reloads its configuration

113 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: LIST ALL TERMINALS OF A PBX EXTENSION

 Check all terminals assigned to a PBX
Extension OrgUnit.
GET: List terminals of a PBX Response
GET https://DOMAIN_REST/rest/terminals?=&where=orgUnitId.eq(523) 200 OK

{
"terminals": [

{
"name": "Mobile – an IP-Phone",
…

} ,
{

"name": ""Vacation Office – GRANDSTREAM GRP2612",
…

}
…
]

}

114 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: SET THE TIME ZONE OF A PHONE

 Set the Time Zone of a Phone.
 The default time zone is defined by the PBX.
 If a phone needs a different time zone, then a terminal

attribute "timezone" must be present or created.

 POST: Create a time zone terminal attribute

 PUT: Assign a different time zone

Response

Response

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 321,
"name": ""timezone"",
"value": "timezone01"

}

PUT https://DOMAIN_REST/rest/terminalAttributes/1182
{

"value": "timezone07"
}

200 OK
No body

200 OK
{

"name": "timezone",
"value": "timezone01",
"id": 1182,

"terminalId": 321
}

115 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: SET THE RINGING TONES OF A PHONE

 Set the ringing tones of a Phone.
 The default time zone is defined by the anSwitch V7 system.
 If a phone needs a different ringing tones , then a terminal

attribute "alertInternal" or "alertExternal" must be present or
created.

 Check via Portal UI page "Phone related features" if the
phone type supports the setting of ringing tones.

 POST: Create the ringing tone terminal attributes

 PUT: Assign a different internal ringing tone

Response

Response

POST https://DOMAIN_REST/rest/terminalAttributes
{

"terminalId": 321,
"name": "alertInternal",
"value": "1"

}

{
"terminalId": 321,
"name": "alertExternal",
"value": "1"

}

200 OK
{

"name": "alertInternal",
"value": "1",
"id": 2081,

"terminalId": 321
}

{
"name": "alertExternal",
"value": "1",
"id": 2082,

"terminalId": 321
}

PUT https://DOMAIN_REST/rest/terminalAttributes/2081
{

"value": "7"
}

200 OK
No body

116 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: GET THE VOICE MAIL MESSAGES

 Get the Voice Mail Messages of a PBX
Extension.
 The VoiceMail messages are associated to the Address ID of

the PBX Extension.

a. GET: Get all Voice Mail Messages of a PBX Extension

b. GET: The audio file of a VoiceMail message

a. Response

b. Response

200 OK
{

"audioFiles": [
{

"number": "301",
"time": 1654692548289,
"duration": 4760,
"name": "User One",
"id": 134,
"type": "message",
"addressId": 743,
"newMessage": true

},
... Further audio file IDs

] }

 Message ID of the audio file to download.

200 OK
Binary code The body of the 200 OK response contains the audio-

stream as binary code that must be saved to a file with
extension *.WAV.

GET https://DOMAIN_REST/rest/ 
audioFiles?where=addressId.eq(743).and(type.like('message'))

No body

GET https://DOMAIN/rest/audioFiles/134.wav
No body

117 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: GET A CALL RECORDING ORDERED VIA CSTA

 A CTI application orders a call
recording via the CSTA protocol and
download the recorded file via REST API.
a. A CTI application orders a call recording with the CSTA method

"recordMessage".

b. In the response of the anSwitch V7 CTI server the message ID of
the recorded audio file is contained, e.g.

c. GET: When the call is finished the CTI application can download
the recorded audio file. c. Response

200 OK
Binary code The body of the 200 OK response contains the audio-

stream as binary code that must be saved to a file with
extension *.WAV.

GET https://DOMAIN_REST/rest/ 
audioFiles?where=addressId.eq(123456)

No body

1
2
3
4
5
6
7

<RecordMessage>
<callToBeRecorded>

<callID>xxx</callID>
<deviceID>dddd</deviceID>

</callToBeRecorded>
<messageID>123456</messageID>

</RecordMessage>

118 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: UPLOAD MUSIC ON HOLD FOR A PBX

 Upload Music on Hold MoH audio file for
a PBX.
 The default MoH is defined by the anSwitch V7 system.

a. POST: Create a new audio-file instance.

b. PUT: Upload the MoH audio file.

c. POST: Create a MoH OrgUnit attribute for the PBX.

 If a PBX needs a different MoH, then a OrgUnit attribute
"musicOnHoldId" must be present or created for the PBX.

a. Response

b. Response

c. Response
POST https://DOMAIN_REST/rest/orgUnitAttributes
{

"orgUnitId": 519,
"name": "musicOnHoldId",
"value": "247"

}

PUT https://DOMAIN_REST/rest/audioFiles/247.wav
Set the headers:
 content-type: audio/wave
 content-length: 1234567890  size of the

audio file.

200 OK
No body

200 OK
{

"name": "musicOnHoldId",
"value": "139",
"id": 778,

"orgUnitId": 519
}

POST https://DOMAIN_REST/rest/audioFiles
{

"type": "static",
"addressId": 0

}

200 OK
{

"id": 247,
"type": "static",
"addressId": 0,
…

}

 This is the audio file ID.
 It must be contained in the uploaded audio file

name.
 It is the reference for the PBX MoH audio file.

119 EXAMPLE: USEFUL PBX & TERMINAL COMMANDS

EXAMPLE CODE: MANAGE CALL FORWARD CF

 Manage Call Forwards CF.
 Every call forward of an PBX Extension is configured in an own

instance of object "Forwards" (like the attributes of a OrgUnit
or terminal).

a. GET: Get the instance ID of private number 301

b. GET: List all Call Forwards CF of private number 301

c. POST: Set new active CFU to 0876543219 for private number 301

d. PUT: Inactivate CFU to 0876543219 for private number 301

a. Response

b. Response

c. Response

d. Response

Address
id: 743
number: 301
name: User One

Forward
id: 689
addressId: 743
type: cfu
destination: *86
delay: 0
inactive: false

Forward
id: 690
addressId: 743
type: cfnr
destination: 0987654321
delay: 25000
inactive: false

200 OK
{

"id": 743
}

 Remember for configuring the call forwards.

GET https://DOMAIN_REST/rest/ 
addresses?where=number.like('301').and(orgUnitId.eq(523))&properties=id

No body

GET https://DOMAIN_REST/rest/forwards?where=addressId.eq(743)
No body

200 OK
Empty response or list of already configured
CFs.

 Check if the desired CF is already configured:
 If not, then the CF instances must be created.
 If yes, then remember its instance-id.

POST https://DOMAIN_REST/rest/forwards
{

"addressId": 743,
"type": "cfu",
"destination": "0876543219",

"delay": 0,

"inactive": false
}

 Select the desired CF type
 Any dialable number (*86 for the own

VoiceMail Box)
 For CFNR define the delay in

milliseconds.
 Activate the CF

200 OK
{

"id": 692,
"type": "cfu",
"destination": "0876543219",
"delay": 0,
"inactive": false,
"timetableId": 0,
"addressId": 743,

}

 Remember for configuring the call forwards.

PUT https://DOMAIN_REST/rest/forwards/743
{ "inactive": true }  Deactivate the CF

200 OK
{ …, "inactive": true, …}

120 EXAMPLE: MANAGE CONTACTS

13 EXAMPLE:
MANAGE
CONTACTS

121 EXAMPLE: MANAGE CONTACTS

EXAMPLE OVERVIEW: MANAGE CONTACTS

 Goal:
 Manage the contacts of a PBX

 Data to prepare:
 Name of the of the PBX
 Name of the PBX extension
 Data of new contact

 Name
 Number
 Short number

 Overview of the execution steps:
1. Get the last 5 CDRs of "Front Desk"

a. GET: Get the OrgUnit ID of extension with name "PA-PBX-
0AX89001".

b. POST: Create new contact with short number "Aarenet
Front Desk".

2. Manage contacts
a. PUT: Change a property of a contact, e.g. number
b. DELETE: Delete a contact

3. Search contacts

 Overview of involved DB objects

OrgUnit
id: 26
type: pbx
name: PBX Comp. A

OrgUnit
id: 489
parentId: 26
type: extension
name: Front Desk

Contact
id: 12
name: "Aarenet Front

Desk"
orgUnitId: 26
telNumber: +41319802811
shortNumber: 800

1.a

1.b

2.b

2.a

3.

122 EXAMPLE: MANAGE CONTACTS

EXAMPLE CODE: CREATE A CONTACT FOR A PBX

1. Create a Contact for a PBX.
a. GET: Get the OrgUnit ID of PBX with name "PA-PBX-0AX89001".

b. Get: Check if contact "Aarenet Front Desk" already exists for
this PBX.

c. POST: Create new contact with short number "Aarenet Front
Desk".

a. Response

b. Response

c. Response

POST https://DOMAIN_REST/rest/contacts
{

"orgUnitId": 26,
"name": "Aarenet Front Desk",
"telNumber": "+41 31 980 28 11",
"shortNumber": "800"

}

 + is not a valid character
 Use 00 instead or the valid international

prefix.

200 OK
{

"orgUnits": [
{

"id": 26
}

]
}

 OrgUnit ID of the PBX, save for later use!

GET https://DOMAIN_REST/rest/orgUnits?where=name.like('PA-PBX-
0AX89001')&properties=id
No body

200 OK
{

"name": "Aarenet Front Desk",
"id": 12,
"type": null,
"orgUnitId": 26,
"telNumber": "+41 31 980 28 11",
"telNumberNormalized": "41319802811",
"shortNumber": "800"

}

 New contact ID

 The normalized number will be dialed when the short
number is dialed.
If a "+" was configured it is stripped and the
destination cannot be found.

GET https://DOMAIN_REST/rest/contacts?where=name.like('Aarenet Front
Desk').and(orgUnitId.eq(26))
No body

200 OK
{

"contacts": []
}

 Empty brackets []  this contact doesn't exist.

123 EXAMPLE: LIST CDR OF A PBX EXTENSION

EXAMPLE CODE: CHANGE, DELETE OR SEARCH CONTACTS

2. Manage a contact
a. PUT: Change a property of a contact, e.g. number

b. DELETE: Delete a contact

3. Search contacts
a. Get: Search the contacts for names that start with "Bo".

b. Get: Search the contacts for names that start with "Bo" and the phone number starts with "079".

a. Response

b. Response

GET https://DOMAIN_REST/rest/contacts?where=name.like('Bo%').and(orgUnitId.eq(26))
No body

PUT https://DOMAIN_REST/rest/contacts/12
{

"telNumber": "0041319802811",
}

200 OK
There is no return of the changed instance.
 Re-read the instance for checking the new value.

GET https://DOMAIN_REST/rest/contacts/12
No body

DELETE https://DOMAIN_REST/rest/contacts/12
No body

200 OK
There is no return of the deleted instance.
 Re-read the instance for ching if it is deleted.

GET https://DOMAIN_REST/rest/contacts?where=name.like('Bo%').and(telNumber.like('079%')).and(orgUnitId.eq(26))
No body

124 EXAMPLE: LIST CDR OF A PBX EXTENSION

14 EXAMPLE: LIST CDR
OF A PBX
EXTENSION

125 EXAMPLE: LIST CDR OF A PBX EXTENSION

EXAMPLE OVERVIEW: LIST CDRS OF A PBX EXTENSION

 Goal:
 Get the last 5 CDRs of user "Front Desk"

 Data per call to be provided:
 Id of the CDR
 Destination number
 Connection date/time
 Call release date/time
 Charge

 Data to prepare:
 Name of the of the PBX
 Name of the PBX extension

 Overview of the execution steps:
1. Get the last 5 CDRs of "Front Desk"

a. GET: Get the OrgUnit ID of extension with name "PA-PBX-
0AX89001".

b. GET: Get the OrgUnit ID of extension with name "Front
Desk".

c. GET: Get 5 CDRs of the PBX extension "Front Desk".

 Overview of involved DB objects

OrgUnit
id: 26
type: pbx
name: PBX Comp. A

OrgUnit
id: 28
parentId: 26
type: extension
name: Front Desk

CDR
id: 1455
accOrgUnitId: 28

1.a

1.c

1.b

126 EXAMPLE: LIST CDR OF A PBX EXTENSION

EXAMPLE CODE: LIST CDRS OF A PBX EXTENSION

1. Get the last 5 CDRs of "Front Desk"
a. GET: Get the OrgUnit ID of PBX with name "PA-PBX-0AX89001".

b. GET: Get the OrgUnit ID of extension with name "Front Desk" of
PBX "PA-PBX-0AX89001".

a. Response

b. Response

GET https://DOMAIN_REST/rest/orgUnits?=&where=name.like('Front
Desk').and(parentId.eq(26))
No body

200 OK
{

"orgUnits": [
{

"name": "PA-PBX-0AX89001",
"id": 26,
"type": "pbx",
"description": "Yupi Inc",
"parentId": 25

}
]

}

 OrgUnit ID of the PBX, save for later use!

GET https://DOMAIN_REST/rest/orgUnits?=&where=name.like('PA-PBX-0AX89001')
No body

200 OK
{

"orgUnits": [
{

"name": "Front Desk",
"id": 28,
"type": "extension",
"description": "",
"parentId": 26

}
]

}

 OrgUnit ID of the PBX extension, save for later use!

127 EXAMPLE: LIST CDR OF A PBX EXTENSION

EXAMPLE CODE: LIST CDRS OF A PBX EXTENSION

1. Get the last 5 CDRs of "Front Desk"
c. GET: Get 5 CDRs of the PBX extension "Front Desk" c. Response

GET
https://DOMAIN_REST/rest/cdrs?where=accOrgUnitId.eq(28)&limit=5&ascending
=id&properties=id,destNumber,timeConnect,timeEnd,chargePublic
No body

200 OK
{

"cdrs": [
{

"id": 2420,
"destNumber": "330",
"timeConnect": 1692364701534,
"timeEnd": 1692364704230,
"chargePublic": 0.0

},
{

"id": 2427,
"destNumber": "0123456789",
"timeConnect": 1694436798192,
"timeEnd": 1694436813831,
"chargePublic": 103.007845565

},
{

"id": 2429,
"destNumber": "0123456789",
"timeConnect": 1694436900075,
"timeEnd": 1694436913697,
"chargePublic": 103.00683370333333

},
{

"id": 2430,
"destNumber": "0123456789",
"timeConnect": 1694437569320,
"timeEnd": 1694437591917,
"chargePublic": 103.01133616166666

},
{

"id": 2432,
"destNumber": "300",
"timeConnect": 1695044262452,
"timeEnd": 1695044269466,
"chargePublic": 0.0

}
]

}

Note For details about the available CDR fields, see the
training documentation:

"Rating & Call Detail Record CDR"
(doc id: training_as7_706_sys_rating_cdr)

Note Do not use this type of obtaining CDRs for billing
purposes!
 Large queries may block the database!
Use the CSV formatted CDR files for this task.

128 EXAMPLE: LIST CDR OF A PBX EXTENSION

EXAMPLE CODE: OTHER CDR COLLECTING COMMANDS

 Get the CDRs of multiple OrgUnits.

 Get all CDR's of PBX from last month.
 Transform the start and end dates to UNIX timestamp in

milliseconds.
(https://www.unixtimestamp.com/)
 timeStart 1.10.2023 00:00  Timestamp: 1696111200'000
 timeEnd 1.11.2023 00:00  Timestamp: 1698793200000

GET https://DOMAIN_REST/rest/cdrs?where=accOrgUnitId.in(28,32)
No body

GET
https://DOMAIN_REST/rest/cdrs?where=accOrgUnitId.eq(28).and(timeStart.ge(16
96111200000)).and(timeEnd.le(1698793200000))
No body

129

LAST PAGE

Date Doc-ID Description Changes
8.12.2022 application_information_as7_api_rest_e2.4 Preliminary published
28.12.2023 application_information_as7_api_rest_e30 V7.14.0; Sections and examples have been revised and

supplemented.
Complete overdone

	REST API Best Practices & Examples
	Introduction & Motivation
	It's not �Magic �It's "Know �How"
	Table of Contents

	1	Overview REST API
	Overview anSwitch V7 REST API
	Overview anSwitch V7 REST API Features
	Via Rest API Manageable DataBase Objects
	Via Rest API Manageable DataBase Objects
	Warning  Direct Access to the anSwitch V7 Database!

	2	Supported REST Methods & Data Formats
	Supported REST Methods
	URL Request Definition
	Supported Data Formats
	Definition of a POST & PUT Request
	Definition of a GET Request
	Definition of a DELETE Request

	3	Filter & Sort & Limit of GET Request Results
	Overview Filter & Sort & Limit & Specific Properties
	Overview Filter & Sort & Limit & Specific Properties
	Filter Instances
	Sort Instances
	Limit Instances
	Specific Properties

	4	Manageable DataBase Objects
	Via Rest API Manageable DataBase Objects
	Overview Instance Parameters
	How to Get Information About Missing DB Objects and Unknown Property Values?
	Object-Key: addresses
	Object-Key: audioFiles
	Object-Key: cdrs
	Object-Key: contacts
	Object-Key: forwards
	Object-Key: holidays
	Object-Key: locations
	Object-Key: orgUnits & orgUnitAttributes
	List of Important PBX 'orgUnitAttributes' Names & Values
	Object-Key: terminals
	Object-Key: terminalAttributes
	List of Important 'terminalAttributes' Names & Values
	Object-Key: users
	Object-Key: userRoles
	Object-Key: userAttributes
	List of Important 'userAttributes' Names & Values

	5	Error Handling & Trouble Shooting
	Introduction of Error Handling
	Host & Path Problems
	Authentication Problems
	OrgUnit & Instance Problems
	Parameter & Value Problem
	Trouble Shooting

	6	Setting Up the REST API Interaction
	IP Connectivity to the REST API
	Create a User Account for the CRM Application
	Prepare the Customers REST Client

	7	Best Practices
	How to Test New POST, PUT, GET and DELETE Requests?
	How to Check a Newly Configured Property Value?
	How to Get Property Values?

	8	"Insomnia" a REST Client Application
	Overview "Insomnia" a REST Client Application
	Basic Configurations
	Configure Environment Variables for the CRM Access
	Configure the First GET Request as Template
	Configure the First POST Request as Template

	9	Example: Create PBX & PBX Extension
	Example Overview: Create PBX & PBX Extension
	Example Overview: Create PBX & PBX Extension
	Example Code: Create PBX
	Example Code: Create PBX Administrator
	Example Code: Create PBX Administrator
	Example Code: Assign PBX public numbers, Limits, etc.
	Example Code: Assign PBX public numbers, Limits, etc.
	Example Code: PBX Extension, Internal Number, DDI
	Example Code: PBX Extension, Internal Number, DDI
	Example Code: PBX Extension, Internal Number, DDI
	Example Code: Create Hidden PBX TopStop
	Example Code: Create Hidden PBX TopStop

	10	Example: Assign & Provision Phones
	Example Overview: Assign & Provision Phones
	Example Overview: Assign & Provision Phones
		Terminal type "anDesktop"
	Example Code: Terminal type "anDesktop"
	Example Code: Terminal type "anDesktop"
	Example Code: Terminal type "anDesktop"

		Terminal type "an IP-Phone"
	Example Code: Terminal type "an IP-Phone"
	Example Code: Terminal type "an IP-Phone"
	Example Code: Terminal type "an IP-Phone"
	Example Code: Terminal type "an IP-Phone"

		Terminal type "anConnect"
	Example Code: Terminal type "anConnect"
	Example Code: Terminal type "anConnect"
	Example Code: Terminal type "anConnect"
	Example Code: Terminal type "anConnect"

		Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, Auto-Provisioning"

		Terminal type "3rd Party SIP-Phone, URL-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, URL-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, URL-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, URL-Provisioning"
	Example Code: Terminal type "3rd Party SIP-Phone, URL-Provisioning"

	11	Example: Delete a PBX or PBX Extension
	Example Code: Delete a PBX or PBX Extension

	12	Example: Useful PBX & Terminal Commands
	Example Code: Force a Phone to re-Download its Config
	Example Code: List all Terminals of a PBX Extension
	Example Code: Set the Time Zone of a Phone
	Example Code: Set the Ringing Tones of a Phone
	Example Code: Get the Voice Mail Messages
	Example Code: Get a Call Recording Ordered via CSTA
	Example Code: Upload Music on Hold for a PBX
	Example Code: Manage Call Forward CF

	13	Example: Manage Contacts
	Example Overview: Manage Contacts
	Example Code: Create a Contact for a PBX
	Example Code: Change, Delete or Search Contacts

	14	Example: List CDR of a PBX Extension
	Example Overview: List CDRs of a PBX Extension
	Example Code: List CDRs of a PBX Extension
	Example Code: List CDRs of a PBX Extension
	Example Code: Other CDR Collecting Commands

	Last Page

